import numpy as np import matplotlib.pyplot as plt import readall as read import astroML as astr import os from astroML.stats import binned_statistic_2d citylow = ['seattle','newyork','losangels'] cityhi = ['Seattle','New York City','Los Angeles'] for i in range(len(citylow)): print 'Starting %s' % cityhi[i] f1 = 'monthdata/%s/MonthlyHistory.html?format=1' % citylow[i] columns,header = read.withcsv(f1,',',header='True',cols='True') print header date,Tmax,Tmean,Tmin,DewMax = columns[0:5] DewMean,DewMin,HumidMax,HumidMean,HumidMin = columns[5:10] PressMax,PressMean,PressMin,VisMax,VisMean = columns[10:15] VisMin,WindMax,WindMean,GustMax,rain = columns[15:20] clouds,event,WindDir = columns[20:] nfiles = range(1,131) for n in nfiles: f2 = 'monthdata/%s/MonthlyHistory.html?format=1.%i' % (citylow[i],n) columns,header = read.withcsv(f2,',',header='True',showlines='False') j = len(columns[0]) for k in range(j): date.append(columns[0][k]),Tmax.append(columns[1][k]),Tmean.append(columns[2][k]),Tmin.append(columns[3][k]),DewMax.append(columns[4][k]) DewMean.append(columns[5][k]),DewMin.append(columns[6][k]),HumidMax.append(columns[7][k]),HumidMean.append(columns[8][k]),HumidMin.append(columns[9][k]) PressMax.append(columns[10][k]),PressMean.append(columns[11][k]),PressMin.append(columns[12][k]),VisMax.append(columns[13][k]),VisMean.append(columns[14][k]) VisMin.append(columns[15][k]),WindMax.append(columns[16][k]),WindMean.append(columns[17][k]),GustMax.append(columns[18][k]),rain.append(columns[19][k]) clouds.append(columns[20][k]),event.append(columns[21][k]),WindDir.append(columns[22][k])
] filesblu = [ "specfiles/hilt600_26b.txt", "specfiles/st1_28b.txt", "specfiles/st3_32b.txt", "specfiles/st6_29b.txt", "specfiles/st7_30b.txt", "specfiles/xxcam_25b.txt", "specfiles/xxcam_24b.txt", ] plttit = ["HILT 600", "Unknwn 1", "Unknwn 3", "Unknwn 6", "Unknwn 7", "XX Cam"] fnames = ["hilt600.pdf", "st1_28spec.pdf", "st3_32spec.pdf", "st6_29spec.pdf", "st7_30spec.pdf", "xxcam_24spec.pdf"] i = 5 # for i in range(len(fnames)): datared = r.withcsv(filesred[i]) wave_r = np.array(datared[0]) band_r = np.array(datared[2]) flux_r = np.array(datared[3]) wave_r = wave_r.astype(float) flux_r = flux_r.astype(float) spec1_r = np.where(band_r == "1.") spec2_r = np.where(band_r == "2.") wv_r = wave_r[spec1_r] fl_r = flux_r[spec1_r] badlo_r = np.where(wv_r > 6925) badhi_r = np.where(wv_r < 6945) bad_r = inters([badlo_r, badhi_r]) wv_r, fl_r = np.delete(wv_r, bad_r), np.delete(fl_r, bad_r) datablue = r.withcsv(filesblu[i])