Exemple #1
0
def infer(model_path, batch_size, test_data_file):
    word = fluid.layers.data(name='word', shape=[1], dtype='int64', lod_level=1)
    mention = fluid.layers.data(
        name='mention', shape=[1], dtype='int64', lod_level=1)
    target = fluid.layers.data(
        name='target', shape=[1], dtype='int64', lod_level=1)

    test_data = paddle.batch(
        reader.file_reader(test_data_file), batch_size=batch_size)
    place = fluid.CPUPlace()
    feeder = fluid.DataFeeder(feed_list=[word, mention], place=place)
    exe = fluid.Executor(place)

    inference_scope = fluid.core.Scope()
    with fluid.scope_guard(inference_scope):
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(model_path, exe)
        print_res = ""
        for data in test_data():
            crf_decode = exe.run(inference_program,
                                 feed=feeder.feed(data),
                                 fetch_list=fetch_targets,
                                 return_numpy=False)
            lod_info = (crf_decode[0].lod())[0]
            np_data = np.array(crf_decode[0])
            assert len(data) == len(lod_info) - 1
            for sen_index in xrange(len(data)):
                assert len(data[sen_index][0]) == lod_info[
                    sen_index + 1] - lod_info[sen_index]
                word_index = 0
                for tag_index in xrange(lod_info[sen_index],
                                        lod_info[sen_index + 1]):
                    word = str(data[sen_index][0][word_index])
                    print_res += str(np_data[tag_index][0]) +" "
                    word_index += 1
            #print_res +="\n"

        print print_res
Exemple #2
0
def main(args):
    if not os.path.exists(args.model_save_dir):
        os.makedirs(args.model_save_dir)

    main = fluid.Program()
    startup = fluid.Program()
    with fluid.program_guard(main, startup):
        avg_cost, feature_out, word, mention, target = ner_net(
            args.word_dict_len, args.label_dict_len)

        crf_decode = fluid.layers.crf_decoding(
            input=feature_out, param_attr=fluid.ParamAttr(name='crfw'))

        (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
         num_correct_chunks) = fluid.layers.chunk_eval(
             input=crf_decode,
             label=target,
             chunk_scheme="IOB",
             num_chunk_types=int(math.ceil((args.label_dict_len - 1) / 2.0)))

        inference_program = fluid.default_main_program().clone(for_test=True)

        sgd_optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
        sgd_optimizer.minimize(avg_cost)

        chunk_evaluator = fluid.metrics.ChunkEvaluator()

        train_reader = paddle.batch(paddle.reader.shuffle(reader.file_reader(
            args.train_data_dir),
                                                          buf_size=2000000),
                                    batch_size=args.batch_size)
        test_reader = paddle.batch(paddle.reader.shuffle(reader.file_reader(
            args.test_data_dir),
                                                         buf_size=2000000),
                                   batch_size=args.batch_size)

        place = fluid.CUDAPlace(
            0) if args.device == 'GPU' else fluid.CPUPlace()
        feeder = fluid.DataFeeder(feed_list=[word, mention, target],
                                  place=place)

        exe = fluid.Executor(place)

        exe.run(startup)
        if args.parallel:
            train_exe = fluid.ParallelExecutor(loss_name=avg_cost.name,
                                               use_cuda=(args.device == 'GPU'))
            test_exe = fluid.ParallelExecutor(use_cuda=(args.device == 'GPU'),
                                              main_program=inference_program,
                                              share_vars_from=train_exe)
        else:
            train_exe = exe
            test_exe = exe

        batch_id = 0
        for pass_id in range(args.num_passes):
            chunk_evaluator.reset()
            train_reader_iter = train_reader()
            start_time = time.time()
            while True:
                try:
                    cur_batch = next(train_reader_iter)
                    cost, nums_infer, nums_label, nums_correct = train_exe.run(
                        fetch_list=[
                            avg_cost.name, num_infer_chunks.name,
                            num_label_chunks.name, num_correct_chunks.name
                        ],
                        feed=feeder.feed(cur_batch))
                    chunk_evaluator.update(
                        np.array(nums_infer).sum().astype("int64"),
                        np.array(nums_label).sum().astype("int64"),
                        np.array(nums_correct).sum().astype("int64"))
                    cost_list = np.array(cost)
                    batch_id += 1
                except StopIteration:
                    break
            end_time = time.time()
            print("pass_id:" + str(pass_id) + ", time_cost:" +
                  str(end_time - start_time) + "s")
            precision, recall, f1_score = chunk_evaluator.eval()
            print("[Train] precision:" + str(precision) + ", recall:" +
                  str(recall) + ", f1:" + str(f1_score))
            p, r, f1 = test2(
                exe, chunk_evaluator, inference_program, test_reader, place,
                [num_infer_chunks, num_label_chunks, num_correct_chunks])
            print("[Test] precision:" + str(p) + ", recall:" + str(r) +
                  ", f1:" + str(f1))
            save_dirname = os.path.join(args.model_save_dir,
                                        "params_pass_%d" % pass_id)
            fluid.io.save_inference_model(save_dirname, ['word', 'mention'],
                                          [crf_decode], exe)
Exemple #3
0
def infer(args):
    word = fluid.layers.data(name='word',
                             shape=[1],
                             dtype='int64',
                             lod_level=1)
    mention = fluid.layers.data(name='mention',
                                shape=[1],
                                dtype='int64',
                                lod_level=1)
    target = fluid.layers.data(name='target',
                               shape=[1],
                               dtype='int64',
                               lod_level=1)

    label_reverse_dict = load_reverse_dict(args.test_label_file)

    test_data = paddle.batch(reader.file_reader(args.test_data_dir),
                             batch_size=args.batch_size)
    place = fluid.CUDAPlace(0) if args.device == 'GPU' else fluid.CPUPlace()
    feeder = fluid.DataFeeder(feed_list=[word, mention, target], place=place)
    exe = fluid.Executor(place)

    inference_scope = fluid.Scope()
    with fluid.scope_guard(inference_scope):
        [inference_program, feed_target_names,
         fetch_targets] = fluid.io.load_inference_model(args.model_path, exe)
        total_passes = args.num_passes + args.skip_pass_num
        batch_times = [0] * total_passes
        word_counts = [0] * total_passes
        wpses = [0] * total_passes
        all_iters = 0
        for pass_id in range(total_passes):
            if pass_id < args.skip_pass_num:
                print("Warm-up pass")
            if pass_id == args.skip_pass_num:
                profiler.reset_profiler()
            iters = 0
            for data in test_data():
                word = to_lodtensor(list(map(lambda x: x[0], data)), place)
                mention = to_lodtensor(list(map(lambda x: x[1], data)), place)

                start = time.time()
                crf_decode = exe.run(inference_program,
                                     feed={
                                         "word": word,
                                         "mention": mention
                                     },
                                     fetch_list=fetch_targets,
                                     return_numpy=False)
                batch_time = time.time() - start
                lod_info = (crf_decode[0].lod())[0]
                np_data = np.array(crf_decode[0])
                word_count = 0
                assert len(data) == len(lod_info) - 1
                for sen_index in range(len(data)):
                    assert len(
                        data[sen_index]
                        [0]) == lod_info[sen_index + 1] - lod_info[sen_index]
                    word_index = 0
                    for tag_index in range(lod_info[sen_index],
                                           lod_info[sen_index + 1]):
                        word = str(data[sen_index][0][word_index])
                        gold_tag = label_reverse_dict[data[sen_index][2]
                                                      [word_index]]
                        tag = label_reverse_dict[np_data[tag_index][0]]
                        word_index += 1
                    word_count += word_index
                batch_times[pass_id] += batch_time
                word_counts[pass_id] += word_count
                iters += 1
                all_iters += 1
            batch_times[pass_id] /= iters
            word_counts[pass_id] /= iters
            wps = word_counts[pass_id] / batch_times[pass_id]
            wpses[pass_id] = wps

            print(
                "Pass: %d, iterations (total): %d (%d), latency: %.5f s, words: %d, wps: %f"
                % (pass_id, iters, all_iters, batch_times[pass_id],
                   word_counts[pass_id], wps))

    # Postprocess benchmark data
    latencies = batch_times[args.skip_pass_num:]
    latency_avg = np.average(latencies)
    latency_std = np.std(latencies)
    latency_pc99 = np.percentile(latencies, 99)
    wps_avg = np.average(wpses)
    wps_std = np.std(wpses)
    wps_pc01 = np.percentile(wpses, 1)

    # Benchmark output
    print('\nTotal passes (incl. warm-up): %d' % (total_passes))
    print('Total iterations (incl. warm-up): %d' % (all_iters))
    print('Total examples (incl. warm-up): %d' % (all_iters * args.batch_size))
    print('avg latency: %.5f, std latency: %.5f, 99pc latency: %.5f' %
          (latency_avg, latency_std, latency_pc99))
    print('avg wps: %.5f, std wps: %.5f, wps for 99pc latency: %.5f' %
          (wps_avg, wps_std, wps_pc01))
Exemple #4
0
def train(args):
    """
    Train the network.
    """
    if not os.path.exists(args.model_save_dir):
        os.mkdir(args.model_save_dir)

    word2id_dict = reader.load_reverse_dict(args.word_dict_path)
    label2id_dict = reader.load_reverse_dict(args.label_dict_path)
    word_rep_dict = reader.load_dict(args.word_rep_dict_path)
    word_dict_len = max(map(int, word2id_dict.values())) + 1
    label_dict_len = max(map(int, label2id_dict.values())) + 1

    avg_cost, crf_decode, word, target = lex_net(args, word_dict_len,
                                                 label_dict_len)
    sgd_optimizer = fluid.optimizer.SGD(learning_rate=args.base_learning_rate)
    sgd_optimizer.minimize(avg_cost)

    (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
     num_correct_chunks) = fluid.layers.chunk_eval(
         input=crf_decode,
         label=target,
         chunk_scheme="IOB",
         num_chunk_types=int(math.ceil((label_dict_len - 1) / 2.0)))
    chunk_evaluator = fluid.metrics.ChunkEvaluator()
    chunk_evaluator.reset()

    train_reader_list = []
    corpus_num = len(args.corpus_type_list)
    for i in xrange(corpus_num):
        train_reader = paddle.batch(
            paddle.reader.shuffle(reader.file_reader(args.traindata_dir,
                                                     word2id_dict,
                                                     label2id_dict,
                                                     word_rep_dict,
                                                     args.corpus_type_list[i]),
                                  buf_size=args.traindata_shuffle_buffer),
            batch_size=int(args.batch_size * args.corpus_proportion_list[i]))
        train_reader_list.append(train_reader)
    test_reader = paddle.batch(reader.file_reader(args.testdata_dir,
                                                  word2id_dict, label2id_dict,
                                                  word_rep_dict),
                               batch_size=args.batch_size)
    train_reader_itr_list = []
    for train_reader in train_reader_list:
        cur_reader_itr = train_reader()
        train_reader_itr_list.append(cur_reader_itr)

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    feeder = fluid.DataFeeder(feed_list=[word, target], place=place)
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())
    batch_id = 0
    start_time = time.time()
    eval_list = []
    iter = 0
    while True:
        full_batch = []
        cur_batch = []
        for i in xrange(corpus_num):
            reader_itr = train_reader_itr_list[i]
            try:
                cur_batch = next(reader_itr)
            except StopIteration:
                print(args.corpus_type_list[i] +
                      " corpus finish a pass of training")
                new_reader = train_reader_list[i]
                train_reader_itr_list[i] = new_reader()
                cur_batch = next(train_reader_itr_list[i])
            full_batch += cur_batch
        random.shuffle(full_batch)

        cost_var, nums_infer, nums_label, nums_correct = exe.run(
            fluid.default_main_program(),
            fetch_list=[
                avg_cost, num_infer_chunks, num_label_chunks,
                num_correct_chunks
            ],
            feed=feeder.feed(full_batch))
        print("batch_id:" + str(batch_id) + ", avg_cost:" + str(cost_var[0]))
        chunk_evaluator.update(nums_infer, nums_label, nums_correct)
        batch_id += 1

        if (batch_id % args.save_model_per_batchs == 1):
            save_exe = fluid.Executor(place)
            save_dirname = os.path.join(args.model_save_dir,
                                        "params_batch_%d" % batch_id)
            fluid.io.save_inference_model(save_dirname, ['word'], [crf_decode],
                                          save_exe)
            temp_save_model = os.path.join(args.model_save_dir,
                                           "temp_model_for_test")
            fluid.io.save_inference_model(
                temp_save_model, ['word', 'target'],
                [num_infer_chunks, num_label_chunks, num_correct_chunks],
                save_exe)

            precision, recall, f1_score = chunk_evaluator.eval()
            print("[train] batch_id:" + str(batch_id) + ", precision:" +
                  str(precision) + ", recall:" + str(recall) + ", f1:" +
                  str(f1_score))
            chunk_evaluator.reset()
            p, r, f1 = test(exe, chunk_evaluator, temp_save_model, test_reader,
                            place)
            chunk_evaluator.reset()
            print("[test] batch_id:" + str(batch_id) + ", precision:" +
                  str(p) + ", recall:" + str(r) + ", f1:" + str(f1))
            end_time = time.time()
            print("cur_batch_id:" + str(batch_id) + ", last " +
                  str(args.save_model_per_batchs) + " batchs, time_cost:" +
                  str(end_time - start_time))
            start_time = time.time()

            if len(eval_list) < 2 * args.eval_window:
                eval_list.append(f1)
            else:
                eval_list.pop(0)
                eval_list.append(f1)
                last_avg_f1 = sum(
                    eval_list[0:args.eval_window]) / args.eval_window
                cur_avg_f1 = sum(
                    eval_list[args.eval_window:2 *
                              args.eval_window]) / args.eval_window
                if cur_avg_f1 <= last_avg_f1:
                    return
                else:
                    print "keep training!"
        iter += 1
        if (iter == args.num_iterations):
            return
Exemple #5
0
    return results


if __name__ == '__main__':

    args = parse_args()
    word2id_dict = reader.load_reverse_dict(args.word_dict_path)
    label2id_dict = reader.load_reverse_dict(args.label_dict_path)
    word_rep_dict = reader.load_dict(args.word_rep_dict_path)
    word_dict_len = max(map(int, word2id_dict.values())) + 1
    label_dict_len = max(map(int, label2id_dict.values())) + 1

    pred = create_predictor(args)

    test_data = paddle.batch(reader.file_reader(args.testdata_dir,
                                                word2id_dict, label2id_dict,
                                                word_rep_dict),
                             batch_size=1)
    batch_id = 0
    id2word = {v: k for k, v in word2id_dict.items()}
    id2label = {v: k for k, v in label2id_dict.items()}
    for data in test_data():
        batch_id += 1
        word_data, word_lod = to_lodtensor(list(map(lambda x: x[0], data)))
        target_data, target_lod = to_lodtensor(list(map(lambda x: x[1], data)))
        result_list = run(pred, [word_data, target_data],
                          [word_lod, target_lod])
        number_infer = np.array(result_list[0])
        number_label = np.array(result_list[1])
        number_correct = np.array(result_list[2])
        lac_result = ""
    return results


if __name__ == '__main__':

    args = parse_args()
    word2id_dict = reader.load_reverse_dict(args.word_dict_path)
    label2id_dict = reader.load_reverse_dict(args.label_dict_path)
    word_rep_dict = reader.load_dict(args.word_rep_dict_path)
    word_dict_len = max(map(int, word2id_dict.values())) + 1
    label_dict_len = max(map(int, label2id_dict.values())) + 1

    pred = create_predictor(args)

    test_data = paddle.batch(
        reader.file_reader(args.testdata_dir, word2id_dict, label2id_dict,
                           word_rep_dict),
        batch_size=1)
    batch_id = 0
    id2word = {v: k for k, v in word2id_dict.items()}
    id2label = {v: k for k, v in label2id_dict.items()}
    for data in test_data():
        batch_id += 1
        word_data, word_lod = to_lodtensor(list(map(lambda x: x[0], data)))
        target_data, target_lod = to_lodtensor(list(map(lambda x: x[1], data)))
        result_list = run(pred, [word_data, target_data],
                          [word_lod, target_lod])
        number_infer = np.array(result_list[0])
        number_label = np.array(result_list[1])
        number_correct = np.array(result_list[2])
        lac_result = ""
        for i in range(len(data[0][0])):