def __init__(self, dbname, password=None): _data, self.state, error = load(dbname, password) if str(type(_data)) != "<class 'dict'>": error = "A password is required to connect to DB {}".format(dbname) event_log(error) if error: raise Exception(error) self.__data = _data del _data self.__name = str(dbname) self.__dataCP = dumps(self.__data)
def main(): train_x, train_y, test_x, test_y, word_to_id, labels = reader.load() m = CRF_MODEL(len(word_to_id), 300, len(labels)) # m.load("checkpoints_emb/crf_emb_14.0.8326.pkl") lr = 0.001 best_cv_f1_score = 0.832 for epoch in range(0, 25): print("epoch: ", epoch) if epoch > 0 and epoch % 10 == 0: lr = lr / 10 print("learning_rate: ", lr) accu = 0 loss = 0 pred_list = [] truth_list = [] perm = numpy.random.permutation(numpy.arange(len(train_x))) for i in perm: _pred, _accu, _loss = m.train(train_x[i], train_y[i], 0.5, lr) accu += _accu loss += _loss pred_list.append(_pred) truth_list.append(train_y[i]) # print("train_hits: {} train_loss: {} ".format(accu/2000, loss/2000)) print("train_hits: {} train_loss: {} ".format(accu/len(train_x), loss/len(train_x))) metric.precision_recall(pred_list, None, truth_list, None) print("") embeddings = m.embedding_tensor.get_value() accu = 0 loss = 0 pred_list = [] for _x, _y in zip(test_x, test_y): _x_emb = average_embedding(embeddings, _x) _pred, _accu, _loss = m.evaluate(_x_emb, _y, 1.0) accu += _accu loss += _loss pred_list.append(_pred) print("cv_hits: {} cv_loss: {} ".format(accu/len(test_x), loss/len(test_x))) *unused, _f1 = metric.precision_recall(pred_list, None, test_y, None) print("") if _f1 > best_cv_f1_score: best_cv_f1_score = _f1 m.save("./checkpoints_emb/{}_{}_{:.4f}.pkl".format("crf_emb", epoch, _f1))
def from_file(fname): with open(fname) as f: code_data = reader.load(f) obtype.tokenize(code_data) tac_env = Env() tac_env.feed_code(code_data) tac_env.exec_all(fname) if tac_env.err_occured: print tac_env.err_occured return None else: return separ.to_func(tac_env.tacs)
def _require(env, args): """(require stdio stdlib)""" for arg in args: if not isinstance(arg, obtype.Token) or not arg.symbolp(): raise CompileTimeError, \ 'require -- argument must be symbol: %r' % arg # exec the file in the environment symb = arg.n fname = symb + '.lisp' fpath_b = os.path.join(util.LIB_DIR, fname) if os.path.isfile(fpath_b): # the file is a builtin lib file: run in the env fpath = fpath_b else: fpath_l = os.path.join(util.PWD_DIR, fname) if not os.path.isfile(fpath_l): raise CompileTimeError, \ 'require -- cannot find file %r\nsearch path are: %r' \ % (fname, [fpath_b, fpath_l]) else: # the file is a local lib file: run in the env fpath = fpath_l if fpath in env.libs: continue # already included else: env.libs[fpath] = 1 with open(fpath) as fp: lib_code = reader.load(fp) obtype.tokenize(lib_code) old_fname = env.curr_fname env.exec_all(fname, lib_code) env.curr_fname = old_fname return obtype.Token('void')
from util import asp_and_lsp_path, clustering_possility, clustering_coof_full, degree_avarage, density from vitality import weiner_path_number, weiner_random_trial, vitality_distr, weiner_new, betweenness_centrality, closeness_centr, degree_centr import math import plotly.plotly as py import plotly.graph_objs as go import plotly.figure_factory as ff from plotit import barplot, distplot, barplotduo from copy import deepcopy from vkimporter import vk_graph def difference_percentage(first, second): return (abs(first - second)) / second * 100.0 graphs = load() # print graphs # g = graphs[0] for g in graphs: # g = vk_graph() g.description() # save_gephi(g) # avarage_shortest_path, longest_shortest_path_lenght, longest_shortest_path = asp_and_lsp_path(g) # print 'average shortest path is %f%%' % avarage_shortest_path # print 'diameter of the network is %d' % longest_shortest_path_lenght # clustering_coof = clustering_possility(g,1000) # print 'clustering cooficent is equal to %f' % clustering_coof # clustering_coof_fully = clustering_coof_full(g) # print clustering_coof_fully
def Main(): # samples_file = "data/samples-1439671035.dat" # (samples_mic0, samples_mic1, samples_mic2, samples_mic3) = caliberation.LoadSamples(samples_file) # channelMap = caliberation.CaliberateChannels(samples_mic0, samples_mic1, samples_mic2, samples_mic3) if(len(sys.argv) >= 2): reader.load(sys.argv[1]) else: reader.load("data/samples-1439673160.dat") framecount = 0 channelCount = 4 globalData = [] isLoudSound = [] soundDirection = [] # 0 is none runningSum = 0.0 runningCount = 0.0 runningVoiceSum = 0.0 while True: parsed = reader.read_one_frame() if not parsed: break (header, frameSamples) = parsed maxVals = [ max([abs(d) for d in tmpData]) for (tmpChannel, tmpData) in frameSamples.items() ] bestChannel = numpy.argmax(maxVals) worstChannel = numpy.argmin(maxVals) # # avg data for channels that are not the loudest # nonMaxChannelData = [v[1] for v in (frameSamples.items()[0:bestChannel] + frameSamples.items()[bestChannel+1:])] # nonMaxChannelAvg = [numpy.average(v) for v in zip(*nonMaxChannelData)] #if(maxVals[bestChannel] / maxVals[worstChannel] > 2.0): data = [dhi - 0.5 * dlo for (dhi, dlo) in zip(frameSamples.items()[bestChannel][1], frameSamples.items()[worstChannel][1])] data = caliberation.RemoveDC(data) globalData.extend(data) (maxVal, voiceData, voiceMax, runningCount, runningSum, runningAvg, runningVoiceSum, runningVoiceAvg) = GetFrameStats(data, runningSum, runningVoiceSum, runningCount) Ndata = len(data) isLoudSound.extend([1 if ((maxVal / runningAvg) > 7.0) else 0] * Ndata) if(maxVals[bestChannel] - maxVals[worstChannel] > 10.0): soundDirection.extend([bestChannel+1] * Ndata) else: soundDirection.extend([0] * Ndata) framecount = framecount+1 if(framecount % 1000 == 0): print "done %d frames" % framecount N = len(globalData) x = range(0, N) plt.plot(x, [(g + 50) for g in globalData]) plt.plot(x, [(l + 1) for l in isLoudSound]) plt.plot(x, [(v + 3) for v in soundDirection]) plt.show()
import sys from filters import removeDc as removeDc from utils import writeListAsRaw, toUbyte import pdb if len( sys.argv ) != 2: print "Usage: %s dat-file" % sys.argv[0] sys.exit( 0 ) # --------------------------------- # main # --------------------------------- channels = [ 0, 1 ] samples = None if __name__ == "__main__": samples = dict( ( ( channel, [] ) for channel in channels ) ) reader.load( sys.argv[1] ) for header, frSamples in reader.perframe( channels, lambdaOp=removeDc ): for channel, data in frSamples.items(): samples[channel].extend( data ) for channel in channels: writeListAsRaw( ( toUbyte( v ) for v in samples[channel] ), filename="data%d.raw" % channel ) reader.cleanup()