Exemple #1
0
def test2():
    val_embed = read_npy(CIFARPROCESSED+'val_image.npy')    
    val_label = read_npy(CIFARPROCESSED+'val_label.npy')    

    cifar = NpairDatamanager(val_embed, val_label, CIFARNCLASS, nsclass=4)
    _, _, anc_l, pos_l = cifar.next_batch(32)
    print(anc_l)
    print(pos_l)
Exemple #2
0
def test1():
    val_embed = read_npy(CIFARPROCESSED+'val_image.npy')    
    val_label = read_npy(CIFARPROCESSED+'val_label.npy')    

    cifar = TripletDatamanager(val_embed, val_label, CIFARNCLASS, nsclass=10) 
    count = np.zeros(cifar.nclass)
    nbatch = cifar.ndata//50+1
    for i in range(nbatch):
        _, label = cifar.next_batch(50)
        for index in range(len(label)):
            count[label[index]]+=1
    print(count)
Exemple #3
0
def cifar_manager(dm_type='basic', nsclass=0):
    '''
    Args:
        dm_type - string 
            defaults to be basic
        nsclass - int
            which required when dm_type='triplet'
    Return:
        dm_train, dm_val, dm_test
            datamanager for each set
    '''
    assert dm_type in DATAMANAGER_DICT.keys(), "The type of data should be in {}".format(DATAMANAGER_DICT.keys())

    dm = DATAMANAGER_DICT[dm_type]

    train_input = read_npy(CIFARPROCESSED+'train_image.npy')
    train_label = read_npy(CIFARPROCESSED+'train_label.npy')
    val_input = read_npy(CIFARPROCESSED+'val_image.npy')
    val_label = read_npy(CIFARPROCESSED+'val_label.npy')
    test_input = read_npy(CIFARPROCESSED+'test_image.npy')
    test_label = read_npy(CIFARPROCESSED+'test_label.npy')

    if dm_type in ['triplet', 'npair']: 
        dm_train = dm(train_input, train_label, CIFARNCLASS, nsclass) 
        dm_val = dm(val_input, val_label, CIFARNCLASS, nsclass)
        dm_test = dm(test_input, test_label, CIFARNCLASS, nsclass) 
    else:
        dm_train = dm(train_input, train_label, CIFARNCLASS)    
        dm_val = dm(val_input, val_label, CIFARNCLASS)    
        dm_test = dm(test_input, test_label, CIFARNCLASS)    

    return dm_train, dm_val, dm_test
Exemple #4
0
def imagenet32_manager(dm_type='basic', nsclass=0):
    '''
    Args:   
        dm_type - string
        nsclass -int
    '''
    train_img = read_npy(IMAGENET32PROCESSED+'train_img.npy')
    train_label = read_npy(IMAGENET32PROCESSED+'train_label.npy')
    val_img = read_npy(IMAGENET32PROCESSED+'val_img.npy')
    val_label = read_npy(IMAGENET32PROCESSED+'val_label.npy')
    test_img = read_npy(IMAGENET32PROCESSED+'test_img.npy')
    test_label = read_npy(IMAGENET32PROCESSED+'test_label.npy')

    dm = DATAMANAGER_DICT[dm_type]
    if dm_type in ['triplet', 'npair']: 
        dm_train = dm(train_img, train_label, IMAGENETCLASS, nsclass) 
        dm_val = dm(val_img, val_label, IMAGENETCLASS, nsclass)
        dm_test = dm(test_img, test_label, IMAGENETCLASS, nsclass) 
    else:
        dm_train = dm(train_img, train_label, IMAGENETCLASS)    
        dm_val = dm(val_img, val_label, IMAGENETCLASS)    
        dm_test = dm(test_img, test_label, IMAGENETCLASS)    

    return dm_train, dm_val, dm_test
Exemple #5
0
    'npair_d' : NpairDatamanagerDouble
    }

if __name__=='__main__':
    import sys
    sys.path.append('../configs')
    sys.path.append('../utils')
    sys.path.append('../tfops')

    # utils
    from reader import read_npy
    # config
    from path import CIFARPROCESSED
    from info import CIFARNCLASS

    val_embed = read_npy(CIFARPROCESSED+'val_image.npy')    
    val_label = read_npy(CIFARPROCESSED+'val_label.npy')    

    cifar = TripletDatamanager(val_embed, val_label, CIFARNCLASS, nsclass=10) 
    count = np.zeros(cifar.nclass)
    nbatch = cifar.ndata//50+1
    for i in range(nbatch):
        _, label = cifar.next_batch(50)
        for index in range(len(label)):
            count[label[index]]+=1
    print(count)

    cifar = NpairDatamanager(val_embed, val_label, CIFARNCLASS, nsclass=4)

    _, _, anc_l, pos_l = cifar.next_batch(32)
    print(anc_l)