def main(testfile=None): if testfile: tr = rd.read(testfile) ti = np.array(tr) tir = [np.reshape(x, (784, 1)) for x in ti] return (n.evaluate(tir)) else: n.SGD(a, 20, 20, 3, 0, c)
def main(testfile=None): if testfile: tf=rd.read(testfile) ts=np.array(tf) return(clf.predict(ts)) else: pred=[int(a) for a in clf.predict(c[0])] nc=sum(int(x==y) for x,y in zip(pred,c[1])) print "{0} of {1} correct = {2}%".format(nc,len(c[1]),(100.0*float(nc)/len(c[1])))
def main(testfile=None): if testfile: a=rd.read(testfile) k=3 predictions=[] for x in range(len(a)): neighbors = knn.getNeighbors(train, a[x], k) result = knn.getResponse(neighbors) predictions.append(result) return(predictions) else: knn.main(train,tests)
def main(testfile=None): global n global a global b if testfile: tr = rd.read(testfile) ti = np.array(tr) tir = [np.reshape(x, (2500, 1)) for x in ti] res = n.evaluate(tir) for i in res: res_converted.append(cnv.convert(int(i))) print(res_converted) else: n.SGD(a, 20, 20, 3.0, b)
def main(testfile=None): global clf global a global b if testfile: tf=rd.read(testfile) ts=np.array(tf) res=clf.predict(ts) for i in res: res_converted.append(cnv.convert(int(i))) print (res_converted) else: pred=[int(a+.1) for a in clf.predict(b[0])] nc=sum(int(x==y) for x,y in zip(pred,b[1])) print "{0} of {1} correct = {2}%".format(nc,len(b[1]),(100.0*float(nc)/len(b[1])))