plt.cla() ax.plot(best_e, best_lndos, ':', color='0.5') for suffix_index in range(len(suffixes)): suffix = suffixes[suffix_index] basename = dataformat % (suffix, frame * skipby) try: e, lndos, ps, lndostm = readnew.e_lndos_ps_lndostm(basename) colors.plot(e, lndos, method=suffix) #if lndostm is not None and suffix[:2] != 'sa': # colors.plot(e, lndostm, method=suffix+'-tm') datname = basename + '-lndos.dat' min_T = readnew.minT(datname) too_lo, too_hi = readnew.too_low_high_energy(datname) ax.axvline(-readnew.max_entropy_state(datname), color='r', linestyle=':') min_important_energy = int(readnew.min_important_energy(datname)) ax.axvline(-min_important_energy, color='b', linestyle=':') if too_lo is not None and suffix[:3] == 'sad': ax.axvline(-too_lo, color='b', linestyle='--') if too_lo is not None and suffix[:3] == 'sad': ax.axvline(-too_hi, color='r', linestyle='--') # Uncomment the following to plot a line at the # min_important_energy with slope determined by min_T # ax.plot(e, (e+min_important_energy)/min_T + lndos[min_important_energy], colors[suffix_index]+'--') # ax.axvline(-readnew.converged_state(datname), color=colors.color(suffix), linestyle=':') # Uncomment the following to plot the lnw along with the lndos # e, lnw = readnew.e_lnw(basename) # ax.plot(e, -lnw, colors[suffix_index]+':')
all_methods = ['-tmi3', '-tmi2', '-tmi', '-toe', '-tmmc'] methods = [] prettymethods = [] T = [] u = [] energy = [] lndos = [] ps = [] hist = [] fref = 'data/lv/ww%.2f-ff%.2f-%gx%g-tmi3-dos.dat' % (ww, ff, lenx, lenyz) energy_ref, lndos_ref = readnew.e_lndos(fref) max_entropy_state = readnew.max_entropy_state(fref) for method in all_methods: try: fbase = 'data/lv/ww%.2f-ff%.2f-%gx%g%s-movie/%s' % ( ww, ff, lenx, lenyz, method, number) myT, myu, mycv, mys, myminT = readnew.T_u_cv_s_minT(fbase) myenergy, mylndos, myps = readnew.e_lndos_ps(fbase) _, myhist = readnew.e_hist(fbase) except: continue energy.append(myenergy[:len(lndos_ref)]) lndos.append(mylndos[:len(lndos_ref)]) ps.append(myps[:len(lndos_ref)]) newhist = np.zeros_like(lndos_ref)
for j in range(len(split2)): methods.append('-%s' % split2[j]) # For SAMC compatibility with LVMC lvextra1 = glob('data/%s-samc*-movie' % filebase) split3 = [i.split('%s-' % filebase, 1)[-1] for i in lvextra1] split4 = [i.split('-m', 1)[0] for i in split3] for j in range(len(split4)): methods.append('-%s' % split4[j]) print methods ref = reference if ref[:len('data/')] != 'data/': ref = 'data/' + ref maxref = int(readnew.max_entropy_state(ref)) minref = int(readnew.min_important_energy(ref)) n_energies = int(minref - maxref + 1) print maxref, minref try: eref, lndosref, Nrt_ref = readnew.e_lndos_ps(ref) except: eref, lndosref = readnew.e_lndos(ref) for method in methods: dirname = 'data/comparison/%s%s' % (filebase, method) dirnametm = 'data/comparison/%s%s-tm' % (filebase, method) try: r = glob('data/%s%s-movie/*lndos.dat' % (filebase, method)) if len(r) == 0: # print(" ... but it has no data in data/%s%s-movie/*lndos.dat" % (filebase,method))
plt.cla() ax.plot(best_e, best_lndos, ':', color='0.5') for suffix_index in range(len(suffixes)): suffix = suffixes[suffix_index] basename = dataformat % (suffix, frame*skipby) try: e, lndos, ps, lndostm = readnew.e_lndos_ps_lndostm(basename) colors.plot(e, lndos, method=suffix) #if lndostm is not None and suffix[:2] != 'sa': # colors.plot(e, lndostm, method=suffix+'-tm') datname = basename+'-lndos.dat' min_T = readnew.minT(datname) too_lo, too_hi = readnew.too_low_high_energy(datname) ax.axvline(-readnew.max_entropy_state(datname), color='r', linestyle=':') min_important_energy = int(readnew.min_important_energy(datname)) ax.axvline(-min_important_energy, color='b', linestyle=':') if too_lo is not None and suffix[:3] == 'sad': ax.axvline(-too_lo, color='b', linestyle='--') if too_lo is not None and suffix[:3] == 'sad': ax.axvline(-too_hi, color='r', linestyle='--') # Uncomment the following to plot a line at the # min_important_energy with slope determined by min_T # ax.plot(e, (e+min_important_energy)/min_T + lndos[min_important_energy], colors[suffix_index]+'--') # ax.axvline(-readnew.converged_state(datname), color=colors.color(suffix), linestyle=':') # Uncomment the following to plot the lnw along with the lndos # e, lnw = readnew.e_lnw(basename) # ax.plot(e, -lnw, colors[suffix_index]+':') except (KeyboardInterrupt, SystemExit): raise
for j in range(len(split2)): methods.append('-%s' %split2[j]) # For SAMC compatibility with LVMC lvextra1 = glob('data/%s-samc*-movie' % filebase) split3 = [i.split('%s-'%filebase, 1)[-1] for i in lvextra1] split4 = [i.split('-m', 1)[0] for i in split3] for j in range(len(split4)): methods.append('-%s' %split4[j]) print methods ref = reference if ref[:len('data/')] != 'data/': ref = 'data/' + ref maxref = int(readnew.max_entropy_state(ref)) minref = int(readnew.min_important_energy(ref)) n_energies = int(minref - maxref+1) print maxref, minref try: eref, lndosref, Nrt_ref = readnew.e_lndos_ps(ref) except: eref, lndosref = readnew.e_lndos(ref) for method in methods: dirname = 'data/comparison/%s%s' % (filebase,method) dirnametm = 'data/comparison/%s%s-tm' % (filebase,method) try: r = glob('data/%s%s-movie/*lndos.dat' % (filebase,method)) if len(r)==0: # print(" ... but it has no data in data/%s%s-movie/*lndos.dat" % (filebase,method))
all_methods = [ '-tmi3', '-tmi2', '-tmi', '-toe', '-tmmc'] methods = [] prettymethods = [] T = [] u = [] energy = [] lndos = [] ps = [] hist = [] fref = 'data/lv/ww%.2f-ff%.2f-%gx%g-tmi3-dos.dat' % (ww,ff,lenx,lenyz) energy_ref,lndos_ref = readnew.e_lndos(fref) max_entropy_state = readnew.max_entropy_state(fref) for method in all_methods: try: fbase = 'data/lv/ww%.2f-ff%.2f-%gx%g%s-movie/%s' % (ww,ff,lenx,lenyz,method,number) myT,myu,mycv,mys,myminT = readnew.T_u_cv_s_minT(fbase) myenergy,mylndos,myps = readnew.e_lndos_ps(fbase) _, myhist = readnew.e_hist(fbase) except: continue energy.append(myenergy[:len(lndos_ref)]) lndos.append(mylndos[:len(lndos_ref)]) ps.append(myps[:len(lndos_ref)]) newhist = np.zeros_like(lndos_ref) newhist[:len(myhist)] = myhist