def test_slate_slot_item_probabilities(self):
     probs = SlateSlotItemProbabilities(
         [SlateItemValues(vs) for vs in self._slot_item_relevances])
     slate = probs.sample_slate(self._slots)
     slate_prob = probs.slate_probability(slate)
     self.assertAlmostEqual(slate_prob, 0.02139037)
     slot_item_expectations = probs.slot_item_expectations()
     slot_rewards = slot_item_expectations.expected_rewards(
         SlateItemValues(self._item_rewards))
     diff = slot_rewards.values - torch.tensor([1.81818, 2.51352, 7.36929])
     self.assertAlmostEqual(diff.sum().item(), 0, places=5)
 def test_metrics(self):
     dcg = DCGSlateMetric()
     ndcg = NDCGSlateMetric(SlateItemValues([1.0, 2.5, 2.0, 3.0, 1.5, 0.0]))
     item_rewards = SlateItemValues([2.0, 1.0, 0.0, 3.0, 1.5, 2.5])
     slate = Slate([SlateItem(1), SlateItem(3), SlateItem(2)])
     reward = dcg(slate.slots, slate.slot_values(item_rewards))
     self.assertAlmostEqual(reward, 5.416508275)
     reward = ndcg(slate.slots, slate.slot_values(item_rewards))
     self.assertAlmostEqual(reward, 0.473547669)
     slate = Slate([SlateItem(5), SlateItem(0), SlateItem(4)])
     reward = dcg(slate.slots, slate.slot_values(item_rewards))
     self.assertAlmostEqual(reward, 7.463857073)
     reward = ndcg(slate.slots, slate.slot_values(item_rewards))
     self.assertAlmostEqual(reward, 0.652540703)
 def test_slate_slot_item_probabilities(self):
     probs = SlateSlotItemProbabilities(
         [SlateItemValues(vs) for vs in self._slot_item_relevances])
     slate = probs.sample_slate(self._slots)
     slate_prob = probs.slate_probability(slate)
     self.assertAlmostEqual(slate_prob, 0.02139037)
     slot_item_expectations = probs.slot_item_expectations()
     slot_rewards = slot_item_expectations.expected_rewards(
         SlateItemValues(self._item_rewards))
     diff = slot_rewards.values - torch.tensor([1.818, 2.449, 4.353])
     self.assertAlmostEqual(diff.sum().item(), 0, places=5)
     for d in slot_item_expectations.items:
         sum = reduce(lambda a, b: a + b, d.values)
         self.assertAlmostEqual(sum.item(), 1.0)
 def item_relevances(self, query_id: int, query_terms: Tuple[int],
                     items: Iterable[Tuple[int, int]]) -> SlateItemValues:
     self._process_training_queries()
     if query_id in self._query_ids:
         q = self._query_ids[query_id]
         rels = q.url_relevances
     else:
         ras = {}
         for t in query_terms:
             if t in self._query_terms:
                 q = self._query_terms[t]
                 for i, r in q.url_relevances:
                     if i in ras:
                         ra = ras[i]
                     else:
                         ra = RunningAverage()
                         ras[i] = ra
                     ra.add(r)
         rels = {i: r.average for i, r in ras.items()}
     item_rels = {}
     for i in items:
         if i in rels:
             item_rels[i] = rels[i]
         else:
             item_rels[i] = 0.0
     return SlateItemValues(item_rels)
Exemple #5
0
 def predict_item(self, query_id: int,
                  query_terms: Tuple[int]) -> SlateItemValues:
     self._process_training_queries()
     if query_id in self._query_ids:
         q = self._query_ids[query_id]
         return SlateItemValues(dict(q.url_relevances.items()))
     else:
         rels = {}
         for t in query_terms:
             q = self._query_terms[t]
             for i, r in q.url_relevances:
                 if i in rels:
                     ra = rels[i]
                 else:
                     ra = RunningAverage()
                 ra.add(r)
         return SlateItemValues({i: r.average for i, r in rels.items()})
 def test_slate_item_probabilities(self):
     probs = SlateItemProbabilities(self._item_relevances)
     slate = probs.sample_slate(self._slots)
     slate_prob = probs.slate_probability(slate)
     self.assertAlmostEqual(slate_prob, 0.017825312)
     slot_item_expectations = probs.slot_item_expectations(self._slots)
     slot_rewards = slot_item_expectations.expected_rewards(
         SlateItemValues(self._item_rewards))
     diff = slot_rewards.values - torch.tensor([1.81818, 2.13736, 2.66197])
     self.assertAlmostEqual(diff.sum().item(), 0, places=5)
def evaluate(
    experiments: Iterable[Tuple[Iterable[SlateEstimator], int]],
    log_dataset: TrainingDataset,
    log_distribution: RewardDistribution,
    tgt_dataset: TrainingDataset,
    tgt_distribution: RewardDistribution,
    log_queries: Sequence[TrainingQuery],
    slate_size: int,
    item_size: int,
    metric_func: str,
    max_num_workers: int,
    device=None,
):
    log_length = len(log_queries)
    slots = SlateSlots(slate_size)

    logging.info("Generating log...")
    st = time.perf_counter()
    tasks = []
    total_samples = 0
    for estimators, num_samples in experiments:
        samples = []
        if num_samples * 10 > log_length:
            logging.warning(f"not enough log data, needs {num_samples * 10}")
            continue
        query_choices = np.random.choice(log_length,
                                         num_samples,
                                         replace=False)
        for i in query_choices:
            q = log_queries[i]
            context = SlateContext(SlateQuery((q.query_id, *(q.query_terms))),
                                   slots)
            url_relevances = q.url_relevances
            if len(url_relevances) > item_size:
                url_relevances = {
                    k: v
                    for k, v in sorted(url_relevances.items(),
                                       key=lambda item: item[1])[:item_size]
                }
            items = url_relevances.keys()
            log_item_rewards = log_dataset.item_relevances(
                q.query_id, q.query_terms, items)
            log_item_probs = log_distribution(log_item_rewards)
            tgt_item_rewards = tgt_dataset.item_relevances(
                q.query_id, q.query_terms, items)
            tgt_item_probs = tgt_distribution(tgt_item_rewards)
            tgt_slot_expectation = tgt_item_probs.slot_item_expectations(slots)
            gt_item_rewards = SlateItemValues(url_relevances)
            if metric_func == "dcg":
                metric = DCGSlateMetric(device=device)
            elif metric_func == "err":
                metric = ERRSlateMetric(4.0, device=device)
            else:
                metric = NDCGSlateMetric(gt_item_rewards, device=device)
            slot_weights = metric.slot_weights(slots)
            if tgt_item_probs.is_deterministic:
                tgt_slate_prob = 1.0
                log_slate = tgt_item_probs.sample_slate(slots)
            else:
                tgt_slate_prob = float("nan")
                log_slate = log_item_probs.sample_slate(slots)
            log_slate_prob = log_item_probs.slate_probability(log_slate)
            log_rewards = log_slate.slot_values(gt_item_rewards)
            log_reward = metric.calculate_reward(slots, log_rewards, None,
                                                 slot_weights)
            gt_slot_rewards = tgt_slot_expectation.expected_rewards(
                gt_item_rewards)
            gt_reward = metric.calculate_reward(slots, gt_slot_rewards, None,
                                                slot_weights)
            samples.append(
                LogSample(
                    context,
                    metric,
                    log_slate,
                    log_reward,
                    log_slate_prob,
                    None,
                    log_item_probs,
                    tgt_slate_prob,
                    None,
                    tgt_item_probs,
                    gt_reward,
                    slot_weights,
                ))
            total_samples += 1
        tasks.append((estimators, SlateEstimatorInput(samples)))
    dt = time.perf_counter() - st
    logging.info(f"Generating log done: {total_samples} samples in {dt}s")

    logging.info("start evaluating...")
    st = time.perf_counter()
    evaluator = Evaluator(tasks, max_num_workers)
    Evaluator.report_results(evaluator.evaluate())
    logging.info(f"evaluating done in {time.perf_counter() - st}s")
Exemple #8
0
 def item_rewards(self, context: SlateContext) -> SlateItemValues:
     qv = context.query.value
     doc_rewards = self._relevances[qv[1]:(qv[1] + qv[2])]
     return SlateItemValues(doc_rewards)
Exemple #9
0
 def item_rewards(self, context: SlateContext) -> SlateItemValues:
     qv = context.query.value
     item_rewards = self._relevances[qv[1]:(qv[1] + qv[2])].detach().clone()
     return SlateItemValues(item_rewards)
Exemple #10
0
def evaluate(
    experiments: Iterable[Tuple[Iterable[SlateEstimator], int]],
    dataset: MSLRDatasets,
    slate_size: int,
    item_size: int,
    metric_func: str,
    log_trainer: Trainer,
    log_distribution: RewardDistribution,
    log_features: str,
    tgt_trainer: Trainer,
    tgt_distribution: RewardDistribution,
    tgt_features: str,
    dm_features: str,
    max_num_workers: int,
    device=None,
):
    assert slate_size < item_size
    print(
        f"Evaluate All:"
        f" slate_size={slate_size}, item_size={item_size}, metric={metric_func}"
        f", Log=[{log_trainer.name}, {log_distribution}, {log_features}]"
        f", Target=[{tgt_trainer.name}, {tgt_distribution}, {tgt_features}]"
        f", DM=[{dm_features}]"
        f", Workers={max_num_workers}, device={device}",
        flush=True,
    )
    logging.info("Preparing models and policies...")
    st = time.perf_counter()
    log_trainer.load_model(
        os.path.join(dataset.folder,
                     log_trainer.name + "_all_" + log_features + ".pickle"))
    # calculate behavior model scores
    log_pred = log_trainer.predict(getattr(dataset, log_features))

    tgt_trainer.load_model(
        os.path.join(dataset.folder,
                     tgt_trainer.name + "_all_" + tgt_features + ".pickle"))
    # calculate target model scores
    tgt_pred = tgt_trainer.predict(getattr(dataset, tgt_features))

    dm_train_features = getattr(dataset, dm_features)

    slots = SlateSlots(slate_size)

    dt = time.perf_counter() - st
    logging.info(f"Preparing models and policies done: {dt}s")

    total_samples = 0
    for _, num_samples in experiments:
        total_samples += num_samples
    logging.info(f"Generating log: total_samples={total_samples}")
    st = time.perf_counter()
    tasks = []
    samples_generated = 0
    total_queries = dataset.queries.shape[0]
    for estimators, num_samples in experiments:
        samples = []
        for _ in range(num_samples):
            # randomly sample a query
            q = dataset.queries[random.randrange(total_queries)]
            doc_size = int(q[2])
            if doc_size < item_size:
                # skip if number of docs is less than item_size
                continue
            si = int(q[1])
            ei = si + doc_size
            # using top item_size docs for logging
            log_scores, item_choices = log_pred.scores[si:ei].sort(
                dim=0, descending=True)
            log_scores = log_scores[:item_size]
            item_choices = item_choices[:item_size]
            log_item_probs = log_distribution(SlateItemValues(log_scores))
            tgt_scores = tgt_pred.scores[si:ei][item_choices].detach().clone()
            tgt_item_probs = tgt_distribution(SlateItemValues(tgt_scores))
            tgt_slot_expectation = tgt_item_probs.slot_item_expectations(slots)
            gt_item_rewards = SlateItemValues(
                dataset.relevances[si:ei][item_choices])
            gt_rewards = tgt_slot_expectation.expected_rewards(gt_item_rewards)
            if metric_func == "dcg":
                metric = DCGSlateMetric(device=device)
            elif metric_func == "err":
                metric = ERRSlateMetric(4.0, device=device)
            else:
                metric = NDCGSlateMetric(gt_item_rewards, device=device)
            query = SlateQuery((si, ei))
            context = SlateContext(query, slots, item_choices)
            slot_weights = metric.slot_weights(slots)
            gt_reward = metric.calculate_reward(slots, gt_rewards, None,
                                                slot_weights)
            if tgt_item_probs.is_deterministic:
                tgt_slate_prob = 1.0
                log_slate = tgt_item_probs.sample_slate(slots)
                log_reward = gt_reward
            else:
                tgt_slate_prob = float("nan")
                log_slate = log_item_probs.sample_slate(slots)
                log_rewards = log_slate.slot_values(gt_item_rewards)
                log_reward = metric.calculate_reward(slots, log_rewards, None,
                                                     slot_weights)
            log_slate_prob = log_item_probs.slate_probability(log_slate)
            item_features = SlateItemFeatures(
                dm_train_features[si:ei][item_choices])
            sample = LogSample(
                context,
                metric,
                log_slate,
                log_reward,
                log_slate_prob,
                None,
                log_item_probs,
                tgt_slate_prob,
                None,
                tgt_item_probs,
                gt_reward,
                slot_weights,
                None,
                item_features,
            )
            samples.append(sample)
            samples_generated += 1
            if samples_generated % 1000 == 0:
                logging.info(
                    f"  samples generated: {samples_generated}, {100 * samples_generated / total_samples:.1f}%"
                )
        tasks.append((estimators, SlateEstimatorInput(samples)))
    dt = time.perf_counter() - st
    logging.info(f"Generating log done: {total_samples} samples in {dt}s")

    logging.info("start evaluating...")
    st = time.perf_counter()
    evaluator = Evaluator(tasks, max_num_workers)
    Evaluator.report_results(evaluator.evaluate())
    logging.info(f"evaluating done in {time.perf_counter() - st}s")
Exemple #11
0
 def item_rewards(self, context: SlateContext) -> SlateItemValues:
     return SlateItemValues(self.item_relevances(context))