Exemple #1
0
def kinetic_problem_with_h2o_hcl_caco3_mgco3_co2_calcite():
    """
    Build a kinetic problem with 1 kg of H2O, 1mmol of HCl which has calcite
    as a kinetic reaction
    """

    database = Database("supcrt98.xml")

    editor = ChemicalEditor(database)
    editor.addAqueousPhaseWithElementsOf("H2O HCl CaCO3 MgCO3")
    editor.addGaseousPhase(["H2O(g)", "CO2(g)"])
    editor.addMineralPhase("Calcite")

    calcite_reaction = editor.addMineralReaction("Calcite")
    calcite_reaction.setEquation("Calcite = Ca++ + CO3--")
    calcite_reaction.addMechanism("logk = -5.81 mol/(m2*s); Ea = 23.5 kJ/mol")
    calcite_reaction.addMechanism(
        "logk = -0.30 mol/(m2*s); Ea = 14.4 kJ/mol; a[H+] = 1.0")
    calcite_reaction.setSpecificSurfaceArea(10, "cm2/g")

    system = ChemicalSystem(editor)
    reactions = ReactionSystem(editor)

    partition = Partition(system)
    partition.setKineticPhases(["Calcite"])

    problem = EquilibriumProblem(system)
    problem.setPartition(partition)
    problem.add("H2O", 1, "kg")
    problem.add("HCl", 1, "mmol")

    return (problem, reactions, partition)
def _create_equilibrium_problem(partition_with_inert_gaseous_phase):
    # Equilibrate 1 kg of H2O and 1 mol of CO2, but CO2(g) and H2O(g) are inert
    problem = EquilibriumProblem(partition_with_inert_gaseous_phase)
    problem.add('H2O', 1, 'kg')
    problem.add('CO2', 1, 'mol')

    return problem
def kinect_problem_with_h2o_hcl_caco3_mgco3_co2_calcite():

    database = Database("supcrt98.xml")

    editor = ChemicalEditor(database)
    editor.addAqueousPhase("H2O HCl CaCO3 MgCO3")
    editor.addGaseousPhase(["H2O(g)", "CO2(g)"])
    editor.addMineralPhase("Calcite")

    calciteReaction = editor.addMineralReaction("Calcite")
    calciteReaction.setEquation("Calcite = Ca++ + CO3--")
    calciteReaction.addMechanism("logk = -5.81 mol/(m2*s); Ea = 23.5 kJ/mol")
    calciteReaction.addMechanism(
        "logk = -0.30 mol/(m2*s); Ea = 14.4 kJ/mol; a[H+] = 1.0"
    )
    calciteReaction.setSpecificSurfaceArea(10, "cm2/g")

    system = ChemicalSystem(editor)
    reactions = ReactionSystem(editor)

    partition = Partition(system)
    partition.setKineticPhases(["Calcite"])

    problem = EquilibriumProblem(system)
    problem.setPartition(partition)
    problem.add("H2O", 1, "kg")
    problem.add("HCl", 1, "mmol")

    state = equilibrate(problem)

    state.setSpeciesMass("Calcite", 100, "g")

    return (state, reactions, partition)
def test_equilibrium_CH4_CO2_H2S_liq_gas(temperature, pressure,
                                         num_regression):
    """
    This test checks the capability of solving a ternary mixture with
    @param Temperature
        temperature in Kelvin which will be used to compute equilibrium
    @param Pressure
        pressure in bar which will be used to compute equilibrium
    """

    db = Database("supcrt98.xml")

    editor = ChemicalEditor(db)

    eos_params = CubicEOSParams(
        phase_identification_method=PhaseIdentificationMethod.
        GibbsEnergyAndEquationOfStateMethod, )

    editor.addGaseousPhase(["CH4(g)", "H2S(g)",
                            "CO2(g)"]).setChemicalModelPengRobinson(eos_params)
    editor.addLiquidPhase(["CH4(liq)", "H2S(liq)", "CO2(liq)"
                           ]).setChemicalModelPengRobinson(eos_params)

    system = ChemicalSystem(editor)

    problem = EquilibriumProblem(system)

    problem.setTemperature(temperature, "K")
    problem.setPressure(pressure, "bar")
    problem.add("CH4(g)", 0.60, "mol")
    problem.add("H2S(g)", 0.35, "mol")
    problem.add("CO2(g)", 0.05, "mol")

    solver = EquilibriumSolver(problem.system())

    options = EquilibriumOptions()
    options.hessian = GibbsHessian.Exact
    options.nonlinear.max_iterations = 100
    options.optimum.max_iterations = 200
    options.optimum.ipnewton.step = StepMode.Conservative

    solver.setOptions(options)

    state = ChemicalState(system)

    result = solver.solve(state, problem)

    assert result.optimum.succeeded

    species_amount = {
        "CH4(g)": np.asarray([state.speciesAmount("CH4(g)")]),
        "H2S(g)": np.asarray([state.speciesAmount("H2S(g)")]),
        "CO2(g)": np.asarray([state.speciesAmount("CO2(g)")]),
        "CH4(liq)": np.asarray([state.speciesAmount("CH4(liq)")]),
        "H2S(liq)": np.asarray([state.speciesAmount("H2S(liq)")]),
        "CO2(liq)": np.asarray([state.speciesAmount("CO2(liq)")]),
    }

    num_regression.check(species_amount)
def test_equilibrium_problem_add_by_chemical_state(partition_with_inert_gaseous_phase, chemical_system):
    state = ChemicalState(chemical_system)
    state.setSpeciesAmount("CO2(g)", 10.0)

    problem = EquilibriumProblem(partition_with_inert_gaseous_phase)
    problem.add(state)

    for element in problem.elementAmounts():
        assert element == 0.0
    assert problem.partition().numInertSpecies() == 2
def test_equilibrium_H2S_liq_gas(temperature, pressure, num_regression):
    db = Database("supcrt98.xml")

    editor = ChemicalEditor(db)

    eos_params = CubicEOSParams(
        model=CubicEOSModel.PengRobinson,
        phase_identification_method=PhaseIdentificationMethod.
        GibbsEnergyAndEquationOfStateMethod,
    )

    editor.addGaseousPhase(["H2S(g)"]).setChemicalModelCubicEOS(eos_params)
    editor.addLiquidPhase(["H2S(liq)"]).setChemicalModelCubicEOS(eos_params)

    system = ChemicalSystem(editor)

    problem = EquilibriumProblem(system)

    problem.setTemperature(temperature, "K")
    problem.setPressure(pressure, "Pa")
    problem.add("H2S(g)", 1.0, "mol")

    solver = EquilibriumSolver(problem.system())

    options = EquilibriumOptions()
    options.hessian = GibbsHessian.Exact
    options.nonlinear.max_iterations = 100
    options.optimum.max_iterations = 200
    options.optimum.ipnewton.step = StepMode.Conservative
    options.optimum.tolerance = 1e-17
    solver.setOptions(options)

    state = ChemicalState(system)

    result = solver.solve(state, problem)

    assert result.optimum.succeeded

    species_amounts = {
        "H2S(g)": np.asarray([state.speciesAmount("H2S(g)")]),
        "H2S(liq)": np.asarray([state.speciesAmount("H2S(liq)")]),
    }

    num_regression.check(species_amounts)
Exemple #7
0
def equilibrium_problem_with_h2o_co2_nacl_halite_dissolved_60C_300bar():
    """
    Build a problem with H2O, H+, Na+, Cl-, HCO3-, CO2(aq), CO3-- and 
    Halite at 60 °C and 300 bar 
    """
    database = Database("supcrt98.xml")

    editor = ChemicalEditor(database)
    aqueous = editor.addAqueousPhase(
        ["H2O(l)", "H+", "OH-", "Na+", "Cl-", "HCO3-", "CO2(aq)", "CO3--", "CO(aq)"]
    )
    aqueous.setActivityModelDrummondCO2()
    gaseous = editor.addGaseousPhase(["H2O(g)", "CO2(g)"])
    gaseous.setChemicalModelSpycherPruessEnnis()
    editor.addMineralPhase("Halite")

    system = ChemicalSystem(editor)

    problem = EquilibriumProblem(system)
    problem.add("H2O", 1, "kg")
    problem.add("CO2", 100, "g")
    problem.add("NaCl", 1, "mol")
    problem.setTemperature(60, "celsius")
    problem.setPressure(300, "bar")

    return (system, problem)
def kinect_problem_with_h2o_nacl_caco3_mgco3_hcl_co2_calcite_magnesite_dolomite_halite():

    database = Database("supcrt98.xml")

    editor = ChemicalEditor(database)

    editor.addAqueousPhase("H2O NaCl CaCO3 MgCO3 HCl")
    editor.addGaseousPhase(["H2O(g)", "CO2(g)"])
    editor.addMineralPhase("Calcite")
    editor.addMineralPhase("Magnesite")
    editor.addMineralPhase("Dolomite")
    editor.addMineralPhase("Halite")

    calciteReaction = editor.addMineralReaction("Calcite")
    calciteReaction.setEquation("Calcite = Ca++ + CO3--")
    calciteReaction.addMechanism("logk = -5.81 mol/(m2*s); Ea = 23.5 kJ/mol")
    calciteReaction.addMechanism(
        "logk = -0.30 mol/(m2*s); Ea = 14.4 kJ/mol; a[H+] = 1.0"
    )
    calciteReaction.setSpecificSurfaceArea(10, "cm2/g")

    magnesiteReaction = editor.addMineralReaction("Magnesite")
    magnesiteReaction.setEquation("Magnesite = Mg++ + CO3--")
    magnesiteReaction.addMechanism("logk = -9.34 mol/(m2*s); Ea = 23.5 kJ/mol")
    magnesiteReaction.addMechanism(
        "logk = -6.38 mol/(m2*s); Ea = 14.4 kJ/mol; a[H+] = 1.0"
    )
    magnesiteReaction.setSpecificSurfaceArea(10, "cm2/g")

    dolomiteReaction = editor.addMineralReaction("Dolomite")
    dolomiteReaction.setEquation("Dolomite = Ca++ + Mg++ + 2*CO3--")
    dolomiteReaction.addMechanism("logk = -7.53 mol/(m2*s); Ea = 52.2 kJ/mol")
    dolomiteReaction.addMechanism(
        "logk = -3.19 mol/(m2*s); Ea = 36.1 kJ/mol; a[H+] = 0.5"
    )
    dolomiteReaction.setSpecificSurfaceArea(10, "cm2/g")

    system = ChemicalSystem(editor)
    reactions = ReactionSystem(editor)

    partition = Partition(system)
    partition.setKineticSpecies(["Calcite", "Magnesite", "Dolomite"])

    problem = EquilibriumProblem(system)
    problem.setPartition(partition)
    problem.add("H2O", 1, "kg")
    problem.add("NaCl", 1, "mol")
    problem.add("CO2", 1, "mol")

    state = equilibrate(problem)

    state.setSpeciesMass("Calcite", 100, "g")
    state.setSpeciesMass("Dolomite", 50, "g")

    return (state, reactions, partition)
Exemple #9
0
def kinetic_problem_with_h2o_nacl_caco3_mgco3_hcl_co2_calcite_magnesite_dolomite_halite(
):
    """
    Build a kinetic problem with 1 kg of H2O, 1 mol of NaCl and 1 mol of CO2
    which has the following kinetic reactions: calcite, Magnesite and Dolomite.
    """
    database = Database("supcrt98.xml")

    editor = ChemicalEditor(database)

    editor.addAqueousPhaseWithElementsOf("H2O NaCl CaCO3 MgCO3 HCl")
    editor.addGaseousPhase(["H2O(g)", "CO2(g)"])
    editor.addMineralPhase("Calcite")
    editor.addMineralPhase("Magnesite")
    editor.addMineralPhase("Dolomite")
    editor.addMineralPhase("Halite")

    calcite_reaction = editor.addMineralReaction("Calcite")
    calcite_reaction.setEquation("Calcite = Ca++ + CO3--")
    calcite_reaction.addMechanism("logk = -5.81 mol/(m2*s); Ea = 23.5 kJ/mol")
    calcite_reaction.addMechanism(
        "logk = -0.30 mol/(m2*s); Ea = 14.4 kJ/mol; a[H+] = 1.0")
    calcite_reaction.setSpecificSurfaceArea(10, "cm2/g")

    magnesite_reaction = editor.addMineralReaction("Magnesite")
    magnesite_reaction.setEquation("Magnesite = Mg++ + CO3--")
    magnesite_reaction.addMechanism(
        "logk = -9.34 mol/(m2*s); Ea = 23.5 kJ/mol")
    magnesite_reaction.addMechanism(
        "logk = -6.38 mol/(m2*s); Ea = 14.4 kJ/mol; a[H+] = 1.0")
    magnesite_reaction.setSpecificSurfaceArea(10, "cm2/g")

    dolomite_reaction = editor.addMineralReaction("Dolomite")
    dolomite_reaction.setEquation("Dolomite = Ca++ + Mg++ + 2*CO3--")
    dolomite_reaction.addMechanism("logk = -7.53 mol/(m2*s); Ea = 52.2 kJ/mol")
    dolomite_reaction.addMechanism(
        "logk = -3.19 mol/(m2*s); Ea = 36.1 kJ/mol; a[H+] = 0.5")
    dolomite_reaction.setSpecificSurfaceArea(10, "cm2/g")

    system = ChemicalSystem(editor)
    reactions = ReactionSystem(editor)

    partition = Partition(system)
    partition.setKineticSpecies(["Calcite", "Magnesite", "Dolomite"])

    problem = EquilibriumProblem(system)
    problem.setPartition(partition)
    problem.add("H2O", 1, "kg")
    problem.add("NaCl", 1, "mol")
    problem.add("CO2", 1, "mol")

    return (problem, reactions, partition)
Exemple #10
0
def brine_co2_path():
    editor = ChemicalEditor()
    editor.addAqueousPhaseWithElementsOf("H2O NaCl CaCO3 MgCO3")
    editor.addGaseousPhase(["H2O(g)", "CO2(g)"])
    editor.addMineralPhase("Calcite")
    editor.addMineralPhase("Magnesite")
    editor.addMineralPhase("Dolomite")
    editor.addMineralPhase("Halite")

    editor.addMineralReaction("Calcite") \
        .setEquation("Calcite = Ca++ + CO3--") \
        .addMechanism("logk = -5.81 mol/(m2*s); Ea = 23.5 kJ/mol") \
        .addMechanism("logk = -0.30 mol/(m2*s); Ea = 14.4 kJ/mol; a[H+] = 1.0") \
        .setSpecificSurfaceArea(10, "cm2/g")

    editor.addMineralReaction("Magnesite") \
        .setEquation("Magnesite = Mg++ + CO3--") \
        .addMechanism("logk = -9.34 mol/(m2*s); Ea = 23.5 kJ/mol") \
        .addMechanism("logk = -6.38 mol/(m2*s); Ea = 14.4 kJ/mol; a[H+] = 1.0") \
        .setSpecificSurfaceArea(10, "cm2/g")

    editor.addMineralReaction("Dolomite") \
        .setEquation("Dolomite = Ca++ + Mg++ + 2*CO3--") \
        .addMechanism("logk = -7.53 mol/(m2*s); Ea = 52.2 kJ/mol") \
        .addMechanism("logk = -3.19 mol/(m2*s); Ea = 36.1 kJ/mol; a[H+] = 0.5") \
        .setSpecificSurfaceArea(10, "cm2/g")

    system = ChemicalSystem(editor)
    reactions = ReactionSystem(editor)

    partition = Partition(system)
    partition.setKineticSpecies(["Calcite", "Magnesite", "Dolomite"])

    problem = EquilibriumProblem(system)
    problem.setPartition(partition)
    problem.setTemperature(60, "celsius")
    problem.setPressure(100, "bar")
    problem.add("H2O", 1, "kg")
    problem.add("NaCl", 0.5, "mol")
    problem.add("CO2", 1, "mol")

    state = equilibrate(problem)

    state.setSpeciesMass("Calcite", 100, "g")
    state.setSpeciesMass("Dolomite", 50, "g")

    path = KineticPath(reactions)
    path.setPartition(partition)

    return path, state
Exemple #11
0
def equilibrium_problem_with_h2o_feoh2_feoh3_nh3_magnetite():
    """
    Build a problem with H2O, Fe(OH)2, Fe(OH)3, NH3 and Magnetite
    """
    database = Database("supcrt98.xml")

    editor = ChemicalEditor(database)
    editor.addAqueousPhase("H2O Fe(OH)2 Fe(OH)3 NH3")
    editor.addGaseousPhase("NH3(g)")
    editor.addMineralPhase("Magnetite")

    system = ChemicalSystem(editor)

    problem = EquilibriumProblem(system)
    problem.add("H2O", 1, "kg")
    problem.add("Fe(OH)2", 1, "mol")
    problem.add("Fe(OH)3", 2, "mol")
    problem.add("NH3", 1, "mol")

    return (system, problem)
Exemple #12
0
def equilibrium_problem_with_h2o_co2_nacl_halite_60C_300bar():
    """
    Build a problem with 1 kg of H2O, 100 g of CO2 and 0.1 mol of NaCl 
    at 60 °C and 300 bar 
    """
    database = Database("supcrt98.xml")

    editor = ChemicalEditor(database)
    editor.addAqueousPhase("H2O NaCl CO2")
    editor.addGaseousPhase(["H2O(g)", "CO2(g)"])
    editor.addMineralPhase("Halite")

    system = ChemicalSystem(editor)

    problem = EquilibriumProblem(system)
    problem.add("H2O", 1, "kg")
    problem.add("CO2", 100, "g")
    problem.add("NaCl", 0.1, "mol")
    problem.setTemperature(60, "celsius")
    problem.setPressure(300, "bar")

    return (system, problem)
Exemple #13
0
def test_equilibrium_path(table_regression, tmpdir):
    """
    An integration test that checks result's reproducibility of
    the calculation of an equilibrium path between two states
    """

    database = Database("supcrt98.xml")

    editor = ChemicalEditor(database)
    editor.addAqueousPhaseWithElements("H O C Na Cl")

    system = ChemicalSystem(editor)

    problem1 = EquilibriumProblem(system)
    problem1.add("H2O", 1, "kg")
    problem1.add("CO2", 0.5, "mol")
    problem1.add("HCl", 1, "mol")

    problem2 = EquilibriumProblem(system)
    problem2.add("H2O", 1, "kg")
    problem2.add("CO2", 0.5, "mol")
    problem2.add("NaOH", 2, "mol")

    state1 = equilibrate(problem1)
    state2 = equilibrate(problem2)

    path = EquilibriumPath(system)

    output = path.output()
    output.precision(16)
    output.filename(tmpdir.dirname + "/equilibriumPathResult.txt")

    # Define which outputs will be written and checked
    output.add("t")
    output.add("pH")
    output.add("speciesMolality(HCO3-)")
    output.add("speciesMolality(CO2(aq))")
    output.add("speciesMolality(CO3--)")

    path.solve(state1, state2)

    pathTable = pd.read_csv(
        tmpdir.dirname + "/equilibriumPathResult.txt",
        index_col=None,
        delim_whitespace=True,
    )

    table_regression.check(pathTable, default_tol=dict(atol=1e-5, rtol=1e-14))
def test_equilibrium_CH4_H2S_CO2_H2O_liq_gas_aq(temperature, pressure,
                                                num_regression):
    """
    This test checks the capability of solving a system that has CH4, H2S,
    CO2, H2O with
    @param Temperature
        temperature in Kelvin which will be used to compute equilibrium
    @param Pressure
        pressure in bar which will be used to compute equilibrium
    """

    db = Database("supcrt98.xml")

    editor = ChemicalEditor(db)

    eos_params = CubicEOSParams(
        phase_identification_method=PhaseIdentificationMethod.
        GibbsEnergyAndEquationOfStateMethod, )

    editor.addAqueousPhase(["CO2(aq)", "H2S(aq)", "H2O(l)"])
    editor.addGaseousPhase(["CH4(g)", "CO2(g)", "H2S(g)",
                            "H2O(g)"]).setChemicalModelCubicEOS(eos_params)
    editor.addLiquidPhase(["CH4(liq)", "CO2(liq)", "H2S(liq)",
                           "H2O(liq)"]).setChemicalModelCubicEOS(eos_params)

    system = ChemicalSystem(editor)

    problem = EquilibriumProblem(system)

    problem.setTemperature(temperature, "K")
    problem.setPressure(pressure, "bar")
    problem.add("H2O(g)", 0.50, "mol")
    problem.add("CO2(g)", 0.05, "mol")
    problem.add("H2S(g)", 0.40, "mol")
    problem.add("CH4(g)", 0.05, "mol")

    # This is a workaround to avoid an Eigen assertion when in Debug:
    # `DenseBase::resize() does not actually allow to resize.`, triggered by `y(iee) = optimum_state.y * RT;`
    problem.add("Z", 1e-15, "mol")

    solver = EquilibriumSolver(problem.system())

    options = EquilibriumOptions()
    options.hessian = GibbsHessian.Exact
    options.nonlinear.max_iterations = 100
    options.optimum.max_iterations = 200
    options.optimum.ipnewton.step = StepMode.Conservative
    options.optimum.tolerance = 1e-14
    solver.setOptions(options)

    state = ChemicalState(system)

    result = solver.solve(state, problem)

    assert result.optimum.succeeded

    species_amount = {
        "CO2(aq)": np.asarray([state.speciesAmount("CO2(g)")]),
        "H2S(aq)": np.asarray([state.speciesAmount("H2S(aq)")]),
        "H2O(l)": np.asarray([state.speciesAmount("H2O(l)")]),
        "CH4(g)": np.asarray([state.speciesAmount("CH4(g)")]),
        "CO2(g)": np.asarray([state.speciesAmount("CO2(g)")]),
        "H2S(g)": np.asarray([state.speciesAmount("H2S(g)")]),
        "H2O(g)": np.asarray([state.speciesAmount("H2O(g)")]),
        "CH4(liq)": np.asarray([state.speciesAmount("CH4(liq)")]),
        "CO2(liq)": np.asarray([state.speciesAmount("CO2(liq)")]),
        "H2S(liq)": np.asarray([state.speciesAmount("H2S(liq)")]),
        "H2O(liq)": np.asarray([state.speciesAmount("H2O(liq)")]),
    }

    num_regression.check(species_amount)
Exemple #15
0
def equilibrium_problem_using_thermofun_aq17_database():
    """
    Build a problem using ThermoFun database aq17
    """

    database = thermofun.Database("databases/thermofun/aq17-thermofun.json")

    editor = ChemicalEditor(database)
    editor.setTemperatures([500.0], "celsius")
    editor.setPressures([3000.0], "bar")

    editor.addAqueousPhase([
        "Al(OH)2+", "Al(OH)3@", "Al(OH)4-", "Al+3", "AlH3SiO4+2", "AlOH+2",
        "Ca+2", "CaCO3@", "CaCl+", "CaCl2@", "CaHCO3+", "CaHSiO3+", "CaOH+",
        "CaSiO3@", "K+", "KAlO2@", "KCl@", "KOH@", "KCO3-", "KHCO3@", "Mg+2",
        "MgCO3@", "MgCl+", "MgCl2@", "MgHCO3+", "MgHSiO3+", "MgOH+", "MgSiO3@",
        "Na+", "NaAl(OH)4@", "NaCO3-", "NaCl@", "NaHCO3@", "NaHSiO3@", "NaOH@",
        "HSiO3-", "SiO2@", "CO@", "CO2@", "CO3-2", "HCO3-", "CH4@", "Cl-",
        "HCl@", "H2@", "O2@", "OH-", "H+", "H2O@"
    ])

    editor.addMineralPhase("Albite")
    editor.addMineralPhase("Andalusite")
    editor.addMineralPhase("Calcite")
    editor.addMineralPhase("Corundum")
    editor.addMineralPhase("Diopside")
    editor.addMineralPhase("Dolomite")
    editor.addMineralPhase("Enstatite")
    editor.addMineralPhase("Grossular")
    editor.addMineralPhase("Margarite")
    editor.addMineralPhase("Microcline")
    editor.addMineralPhase("Muscovite")
    editor.addMineralPhase("Pargasite-Mg")
    editor.addMineralPhase("Phlogopite")
    editor.addMineralPhase("Quartz")
    editor.addMineralPhase("Sanidine")
    editor.addMineralPhase("Sillimanite")
    editor.addMineralPhase("Zoisite")

    system = ChemicalSystem(editor)

    problem = EquilibriumProblem(system)
    problem.add("H2O", 1000, "g")
    problem.add("CO2", 0.001, "g")
    problem.add("CaCO3", 1, "g")
    problem.add("MgSiO3", 1, "g")
    problem.add("NaCl", 5, "g")
    problem.add("NaAlSi3O8", 37, "g")
    problem.add("KAl3Si3O10(OH)2", 13, "g")
    problem.add("SiO2", 30, "g")
    problem.add("KAlSi3O8", 20, "g")
    problem.setTemperature(500.0, "celsius")
    problem.setPressure(3000.0, "bar")

    return (system, problem)
def test_equilibrium_problem_add(partition_with_inert_gaseous_phase):
    problem = EquilibriumProblem(partition_with_inert_gaseous_phase)
    problem.add("CO2", 10.0, 'mol')

    assert sum(problem.elementAmounts()) == 30.0
    assert problem.partition().numInertSpecies() == 2