def test(): HINRec_model = HINRec(model_name='IsRec_best', semantic_mode='TF_IDF', epoch_num=40, neighbor_size=15, topTopicNum=3, cluster_mode='LDA', cluster_mode_topic_num=50) print(HINRec_model.get_true_candi_apis())
def bl_IsRec_best(a_dataset): model_name = 'IsRec_best' # 'IsRec' 'IsRec_best_modified' epoch_num = 20 neighbor_size = 15 topTopicNum = 3 cluster_mode = 'LDA' cluster_mode_topic_nums = [50] # 10,25,75,,100,125,150 train_data, test_data = get_train_test_data(a_dataset.train_data, a_dataset.test_data) for cluster_mode_topic_num in cluster_mode_topic_nums: HINRec_model = HINRec(model_name=model_name, semantic_mode='TF_IDF', epoch_num=epoch_num, neighbor_size=neighbor_size, topTopicNum=topTopicNum, cluster_mode=cluster_mode, cluster_mode_topic_num=cluster_mode_topic_num) if os.path.exists(HINRec_model.weight_path): print('have trained,return!') else: HINRec_model.train(test_data) HINRec_model.save_model() evalute_by_epoch(HINRec_model, HINRec_model, HINRec_model.model_name, test_data, evaluate_by_slt_apiNum=True) # )
def bl_IsRec(a_dataset): model_name = 'IsRec' # '' epoch_nums = [20] # 15,100,1000 neighbor_size = 15 topTopicNums = [3] # [3,4,5,6] train_data, test_data = get_train_test_data(a_dataset.train_data, a_dataset.test_data) for epoch_num in epoch_nums: for topTopicNum in topTopicNums: HINRec_model = HINRec(model_name=model_name, epoch_num=epoch_num, neighbor_size=neighbor_size, topTopicNum=topTopicNum) if os.path.exists(HINRec_model.weight_path): print('have trained,return!') else: HINRec_model.train(test_data) # HINRec_model.test_model(test_data) HINRec_model.save_model() evalute_by_epoch(HINRec_model, HINRec_model, HINRec_model.model_name, test_data, evaluate_by_slt_apiNum=True ) # ,if_save_recommend_result=True)
def bl_PasRec(): model_name = 'PasRec_2path' # 'PasRec_2path' epoch_num = 60 # 之前是40 40比20差点 neighbor_size = 15 topTopicNum = 3 args = data_repository.get_args() train_data, test_data = data_repository.get_ds( ).train_data, data_repository.get_ds().test_data HINRec_model = HINRec(args, model_name=model_name, epoch_num=epoch_num, neighbor_size=neighbor_size, topTopicNum=topTopicNum) if os.path.exists(HINRec_model.weight_path): print('have trained,return!') else: # 这里是每隔20epoch测试一下,所以train中输入test_data HINRec_model.train(test_data) HINRec_model.save_model() evalute_by_epoch( HINRec_model, HINRec_model, HINRec_model.model_name, test_data, evaluate_by_slt_apiNum=False) # ,if_save_recommend_result=True)
def NI_online(): # 可以用于CI,NI,topMLP,ft等 # HINRec_model = HINRec(model_name='IsRec_best',semantic_mode='TF_IDF', epoch_num=40, neighbor_size=15,topTopicNum=3,cluster_mode='LDA',cluster_mode_topic_num=50) HINRec_model = HINRec(model_name='PasRec', epoch_num=40, neighbor_size=15, topTopicNum=3) CI_recommend_model = CI_Model(new_old) # 'old' # CI_recommend_model.prepare() # CI_model_obj = CI_recommend_model.get_model() # CI_model_obj = train_model(CI_recommend_model, CI_model_obj,train_data,test_data,*new_Para.param.train_paras) # ,true_candidates_dict=HINRec_model.get_true_candi_apis() 'monitor loss&acc' # evalute_by_epoch(CI_recommend_model, CI_model_obj, CI_recommend_model.model_name, test_data, # if_save_recommend_result=True, evaluate_by_slt_apiNum=True) # analyze_result(CI_recommend_model, new_Para.param.topKs) # CI_recommend_model.show_slt_apis_tag_features(a_dataset.train_data) # 检查中间feature结果 # # CI_recommend_model.get_slt_apis_mid_features(train_data,test_data) # 存储所有样本的attention的中间结果,为deepFm准备 # # CI_recommend_model.save_for_deepFM() # # 调优NI的score # for pruned_neighbor_baseScore in [0,0.2,0.3]: # # NI_OL_recommend_model = NI_Model(new_old, if_implict=True, if_explict=False, # if_correlation=False, # pruned_neighbor_baseScore=pruned_neighbor_baseScore) # sim_model = HINRec_model if new_Para.param.NI_OL_mode == 'IsRec_best_Sim' else None # CI_recommend_model # NI_OL_recommend_model.prepare(sim_model, train_data, test_data) # NI_OL_model_obj = NI_OL_recommend_model.get_model() # NI_OL_model_obj = train_model(NI_OL_recommend_model, NI_OL_model_obj, train_data, test_data, # *new_Para.param.train_paras, # true_candidates_dict=HINRec_model.get_true_candi_apis()) NI_OL_recommend_model = NI_Model_online( 'new', if_implict=True, if_explict=False, if_correlation=False) # 'new' ,pruned_neighbor_baseScore = 0 # 构建即可,读取之前训练好的相似度数据 # HINRec_model = HINRec(model_name='IsRec_best',semantic_mode='TF_IDF', epoch_num=40, neighbor_size=15,topTopicNum=3,cluster_mode='LDA',cluster_mode_topic_num=50) # 'IsRec_best_Sim' sim_model = CI_recommend_model if new_Para.param.NI_OL_mode == 'tagSim' else HINRec_model # NI_OL_recommend_model.prepare(sim_model, train_data, test_data) NI_OL_model_obj = NI_OL_recommend_model.get_model() NI_OL_model_obj = train_model( NI_OL_recommend_model, NI_OL_model_obj, train_data, test_data, *new_Para.param.train_paras ) # ,true_candidates_dict=HINRec_model.get_true_candi_apis()
def newDeepFM(): CI_recommend_model = CI_Model(new_old) # 'old' CI_recommend_model.prepare() HINRec_model = HINRec(model_name='PasRec', epoch_num=40, neighbor_size=15, topTopicNum=3) sim_model = CI_recommend_model if new_Para.param.NI_OL_mode == 'tagSim' else HINRec_model # NI_OL_recommend_model = NI_Model_online( new_old, if_implict=True, if_explict=False, if_correlation=False) # 'new' ,pruned_neighbor_baseScore = 0 NI_OL_recommend_model.prepare(sim_model, train_data, test_data) mashup_NI_features = NI_OL_recommend_model.mid_sltAids_2NI_feas api_NI_features = NI_OL_recommend_model.i_factors_matrix NI_feas = mashup_NI_features, api_NI_features if not os.path.exists(CI_recommend_model.ma_text_tag_feas_path): # 如果特征的存储文件不存在,再加载模型,退出重新运行 CI_model_obj = CI_recommend_model.get_model() CI_model_obj = train_model( CI_recommend_model, CI_model_obj, train_data, test_data, *new_Para.param.train_paras ) # ,true_candidates_dict=HINRec_model.get_true_candi_apis() 'monitor loss&acc' CI_feas = CI_recommend_model.get_mashup_api_features( CI_recommend_model.all_mashup_num, CI_recommend_model.all_api_num + 1) # 最后一个是填充虚拟api的特征 print('re-run the program!') else: CI_feas = CI_recommend_model.get_mashup_api_features( CI_recommend_model.all_mashup_num, CI_recommend_model.all_api_num + 1) run_new_deepFM(CI_feas, NI_feas, train_data, test_data, CI_recommend_model.all_api_num, epoch_num=10)
def get_preTrain_CINI_model(): HINRec_model = HINRec(model_name='PasRec', epoch_num=40, neighbor_size=15, topTopicNum=3) CI_recommend_model = CI_Model(new_old) # 'old' CI_recommend_model.prepare() CI_model_obj = CI_recommend_model.get_model() CI_model_obj = train_model( CI_recommend_model, CI_model_obj, train_data, test_data, *new_Para.param.train_paras ) # ,true_candidates_dict=HINRec_model.get_true_candi_apis() 'monitor loss&acc' NI_OL_recommend_model = NI_Model_online( new_old, if_implict=True, if_explict=False, if_correlation=False) # 'new' ,pruned_neighbor_baseScore = 0 # 构建即可,读取之前训练好的相似度数据 # HINRec_model = HINRec(model_name='IsRec_best',semantic_mode='TF_IDF', epoch_num=40, neighbor_size=15,topTopicNum=3,cluster_mode='LDA',cluster_mode_topic_num=50) # 'IsRec_best_Sim' sim_model = CI_recommend_model if new_Para.param.NI_OL_mode == 'tagSim' else HINRec_model # NI_OL_recommend_model.prepare(sim_model, train_data, test_data) return CI_recommend_model, NI_OL_recommend_model
def test_simModes(a_dataset, new_old='new', if_few=False): if if_few: train_data, test_data = a_dataset.get_few_samples(128) print(type(train_data)) print(type(test_data)) else: train_data, test_data = a_dataset.train_data, a_dataset.test_data HINRec_model = HINRec(model_name=new_Para.param.NI_OL_mode, epoch_num=20, neighbor_size=15, topTopicNum=3) # 'IsRec_best' 这个是预训练的相似度模型 CI_recommend_model = CI_Model(new_old) # 'old' CI_recommend_model.prepare() CI_model_obj = CI_recommend_model.get_model() CI_model_obj = train_model( CI_recommend_model, CI_model_obj, train_data, test_data, *new_Para.param.train_paras ) # ,true_candidates_dict=HINRec_model.get_true_candi_apis() 'monitor loss&acc' # evalute_by_epoch(CI_recommend_model, CI_model_obj, CI_recommend_model.simple_name, test_data, # if_save_recommend_result=True, evaluate_by_slt_apiNum=True) # 为no_slt CI设计 # CI_model_obj = train_model(CI_recommend_model, CI_model_obj, train_data, a_dataset.test_data_no_reduct, # *new_Para.param.train_paras) # # evalute_by_epoch(CI_recommend_model, CI_model_obj, CI_recommend_model.simple_name, a_dataset.test_data_no_reduct, # if_save_recommend_result=True, evaluate_by_slt_apiNum=True) sim_model = CI_recommend_model if new_Para.param.NI_OL_mode == 'tagSim' else HINRec_model # NI_OL_recommend_model = NI_Model_online( new_old, if_implict=True, if_explict=False, if_correlation=False, eachPath_topK=True) # 'new' ,pruned_neighbor_baseScore = 0 # 构建即可,读取之前训练好的相似度数据 NI_OL_recommend_model.prepare_sims(sim_model, train_data, test_data) NI_OL_model_obj = NI_OL_recommend_model.get_model() NI_OL_model_obj = train_model(NI_OL_recommend_model, NI_OL_model_obj, train_data, test_data, *new_Para.param.train_paras) # # # # explicit # explicit_NI_recommend_model = NI_Model(new_old,if_implict=False,if_explict=True,if_correlation=False) # explicit_NI_recommend_model.prepare(sim_model,train_data, test_data) # NI的模型搭建需要CI模型生成所有mashup/api的feature # explict_NI_model_obj = explicit_NI_recommend_model.get_model() # explict_NI_model_obj = train_model(explicit_NI_recommend_model, explict_NI_model_obj,train_data, test_data, *new_Para.param.train_paras) # evalute_by_epoch(NI_OL_recommend_model, NI_OL_model_obj, NI_OL_recommend_model.simple_name, a_dataset.test_data, # if_save_recommend_result=True, evaluate_by_slt_apiNum=True) # 专门为no_slt NI设计 # NI_OL_model_obj = train_model(NI_OL_recommend_model, NI_OL_model_obj, train_data, a_dataset.test_data_no_reduct, # *new_Para.param.train_paras) # # evalute_by_epoch(NI_OL_recommend_model, NI_OL_model_obj, NI_OL_recommend_model.simple_name, a_dataset.test_data_no_reduct, # if_save_recommend_result=True, evaluate_by_slt_apiNum=True) # # # # # # # CI+ implict top_MLP_recommend_model = top_MLP( CI_recommend_model, CI_model_obj, NI_recommend_model1=NI_OL_recommend_model, NI_model1=NI_OL_model_obj) top_MLP_model = top_MLP_recommend_model.get_model() top_MLP_model = train_model(top_MLP_recommend_model, top_MLP_model, train_data, test_data, *new_Para.param.train_paras) top_MLP_recommend_model.save_sth() # 存储训练测试过程中使用的所有实例的中间结果