Exemple #1
0
 def rating_pred(user_id,item_list,algo):
     pred = {}
     for i in item_list:
         prediction = algo.predict(user_id, i)
         pred[i] = prediction.est
     return pred
from data_loader import data, user_ids, movie_ids
from recommender import algo

# Load the training data
trainingSet = data.build_full_trainset()

print("Please have patience computing takes a minute.")

# Train the NN
algo.fit(trainingSet)

while True:
    print("\n")
    user = int(input("Please enter user: "******"Please enter movie: "))
    if user <= len(user_ids) and movie <= len(movie_ids):
        # Predict and display the results
        prediction = algo.predict(user,movie)
        result = prediction.est
        print("Prediction for this movie: " + str(result))
    else:
        print("User or movie doesn't exist!")
Exemple #3
0
test_user_tag_dict = {}
for user in user_list:
    spe_user_df = test_df.loc[test_df['user_id'] == user]
    spe_user_tag_list = list(
        set(spe_user_df['hashtag'].explode('hashtag').tolist()))
    test_user_tag_dict[user] = spe_user_tag_list

trainingSet = data.build_full_trainset()

algo.fit(trainingSet)

testF2 = open(
    './' + dataPath + classifierPath + '/test' + classifierPath + '2.dat', "a")
preF = open(
    './' + dataPath + classifierPath + '/pre' + classifierPath + '.txt', 'a')
for user_num, user in enumerate(user_list):
    print(user_num)
    testF2.write(f"# query {user_num + 1}\n")
    positive_tag_list = list(set(test_user_tag_dict[user]))
    for tag in positive_tag_list:
        testF2.write(f"1 qid:{user_num+1}\n")
        precision = algo.predict(user, tag)
        preF.write(f"{precision.est}\n")
    negative_tag_list = list(set(test_tag_list) - set(positive_tag_list))
    for tag in negative_tag_list:
        testF2.write(f"0 qid:{user_num + 1}\n")
        precision = algo.predict(user, tag)
        preF.write(f"{precision.est}\n")
testF2.close()
preF.close()
Exemple #4
0
# -*- coding: utf-8 -*-
"""
Created on Sun Jul 28 14:15:51 2019

@author: PAVAN
"""

from recommender import data, algo
trainingSet = data.build_full_trainset()
algo.fit(trainingSet)
prediction = algo.predict('E', 2)
prediction.est
from load_data import data
from recommender import algo
import pandas as pd
import csv
import math
import functions

trainingSet = data.build_full_trainset()
algo.fit(trainingSet)

test_data = pd.read_csv('test.csv')
errors = []

with open('test2.csv', mode='w', newline='') as thefile:
    writer = csv.writer(thefile,
                        delimiter=',',
                        quotechar='"',
                        quoting=csv.QUOTE_MINIMAL)
    writer.writerow(
        ['item', 'user', 'actual rating', 'predicted rating', 'error'])

    for i in test_data.values:
        predicted_value = algo.predict(i[1], i[0]).est
        error = math.fabs(i[2] - predicted_value)
        errors.append(error)

rms_error = functions.rms(errors, len(errors))
print('Mean error:', rms_error)