Exemple #1
0
def samplePlot(fList):
    import numpy as np
    import matplotlib.pyplot as plt

    from matplotlib.ticker import NullFormatter  # useful for `logit` scale

    # Fixing random state for reproducibility
    # plot with various axes scales
    plt.figure(1)
    i = 0
    for file in fList:
        i += 1
        print(file)
        plt.subplot(330 + i)
        signal = rd.importSignal(file)
        plotEach(signal)

    # Format the minor tick labels of the y-axis into empty strings with
    # `NullFormatter`, to avoid cumbering the axis with too many labels.
    plt.gca().yaxis.set_minor_formatter(NullFormatter())
    # Adjust the subplot layout, because the logit one may take more space
    # than usual, due to y-tick labels like "1 - 10^{-3}"
    plt.subplots_adjust(top=0.92,
                        bottom=0.08,
                        left=0.10,
                        right=0.95,
                        hspace=0.25,
                        wspace=0.35)

    plt.show()
Exemple #2
0
def execute(silences,
            inputFolder='./raw/',
            outputFolder='./train/',
            segment=500,
            verbose=True,
            defaultSilenceLen=defaultLen):

    import random as ran

    silences_list_len = len(silences)  # number of silences sample

    for file in listFile(os.walk(inputFolder), ['*.wav']):
        org = rd.importSignal(inputFolder + file)
        wav, __len = trim(org, outOrgLen=True)

        for i in range(
                1
        ):  # range (max ((defaultSilenceLen - __len) // segment-2, 1)):
            idx = ran.randrange(0, silences_list_len)
            choice = silences[idx]
            seg = mix(wav, choice, i * segment)
            sname = outputFolder + 'mix_%d_%d_%s' % (idx, i, file)
            rd.save(seg, sname)
            if verbose:
                print("Saved file:%-40s with sample size:%5d" %
                      (sname, len(seg)))
Exemple #3
0
def loadSilences(dir='./raw/silent/'):
    silences = []
    for silent in listFile(os.walk(dir), ['*.wav']):

        silence = rd.importSignal('%s%s' % (dir, silent))[0:defaultLen]
        silences.append(silence)
        # print (len (silence))
    return silences
Exemple #4
0
def pretest():
    wav1 = rd.importSignal('./raw/silent/silent0.wav')[0:defaultLen]
    wav2, __len = trim(rd.importSignal('./raw/như/nhu1.wav'), outOrgLen=True)
    wav = mix(wav2, wav1, 0)

    fig = plt.gcf()
    i = 0

    seg = 1000
    count = (len(wav1) - __len) // seg
    print(count)
    while 1:
        i = (i + 1) % count
        plt.clf()
        wav = mix(wav2, wav1, i * seg)
        plt.plot(wav)
        fig.canvas.draw()
        plt.pause(0.6)
 def fimport(i, label):
     mfcc = transRaw(rd.importSignal(folder + i), trim=True)
     # mfcc = mfcc.reshape (defaultLen // particle, particle)
     # wav = processWave (rd.importSignal (folder+i))
     # sd.play (wav)
     # sd.wait ()
     # vz.plot (wav)
     # vz.show ()
     X_train.append(mfcc)
     Y_train.append(label)
    def check(i):
        from time import time
        wav = rd.importSignal(i)
        mfcc = transRaw(wav, trim=True)  # have to trim a word
        #from time import sleep
        mfcc = mfcc.reshape(1, mfcc.shape[0], mfcc.shape[1])
        # mfcc = mfcc.reshape (1, defaultLen // particle, particle)

        mark = time()
        pred = lobe.predict(mfcc)
        print('%-40s' % str(pred),
              'for %10s estimate time in second: %5.4f' % (i, time() - mark),
              end=' ')
        chosen = 0
        mx = 0
        for i in range(len(pred[0])):
            if mx < pred[0][i]:
                chosen = i
                mx = pred[0][i]
        print('label:', chosen)

        return (pred[0][0] >= 0.5)
Exemple #7
0
def test():
    file = 'tmp.wav'
    signal = rd.importSignal(file)
    print(signal)
    print(type(signal))
    rd.plot(signal, file)
Exemple #8
0
def loadMfccFromFile(name):
    wav = rd.importSignal(name)
    return getMfcc(wav)