Exemple #1
0
def testKNNbasic():
    for i in range(1,10):
        print 'k=',i*10
        algo=KNNBasic(k=i*10)
        #algo=SVD()
        
        evaluate(algo,data)
Exemple #2
0
from recsys import AlgoBase
from recsys import Dataset
from recsys import evaluate


class MyOwnAlgorithm(AlgoBase):
    def __init__(self):

        # Always call base method before doing anything.
        AlgoBase.__init__(self)

    def train(self, trainset):

        # Here again: call base method before doing anything.
        AlgoBase.train(self, trainset)

        # Compute the average rating. We might as well use the
        # trainset.global_mean attribute ;)
        self.the_mean = np.mean(
            [r for (_, _, r) in self.trainset.all_ratings()])

    def estimate(self, u, i):

        return self.the_mean


data = Dataset.load_builtin('ml-100k')
algo = MyOwnAlgorithm()

evaluate(algo, data)
Exemple #3
0
"""
This module descibes the most basic usage of RecSys: you define a prediction
algorithm, (down)load a dataset and evaluate the performances of the algorithm.
"""

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

from recsys import NormalPredictor
from recsys import Dataset
from recsys import evaluate

# Load the movielens-100k dataset and split it into 3 folds for
# cross-validation.
data = Dataset.load_builtin('ml-100k')
data.split(n_folds=3)

# This algorithm predicts a random rating sampled from a normal distribution.
algo = NormalPredictor()

# Evaluate performances of our algorithm on the dataset.
perf = evaluate(algo, data, measures=['RMSE', 'MAE'])

print(perf['RMSE'])
print(perf['MAE'])