Exemple #1
0
def init_row_clustering(data_matrix, isotropic, num_iter=200):
    m, n = data_matrix.m, data_matrix.n
    state = crp.fit_model(data_matrix,
                          isotropic_w=isotropic,
                          isotropic_b=isotropic,
                          num_iter=num_iter)

    U = np.zeros((m, state.assignments.max() + 1), dtype=int)
    U[np.arange(m), state.assignments] = 1
    left = recursive.MultinomialNode(U)

    if isotropic:
        right = recursive.GaussianNode(state.centers, 'scalar',
                                       state.sigma_sq_b)
    else:
        right = recursive.GaussianNode(state.centers, 'col', state.sigma_sq_b)

    pred = state.centers[state.assignments, :]
    X = data_matrix.sample_latent_values(pred,
                                         state.sigma_sq_w * np.ones((m, n)))
    if isotropic:
        noise = recursive.GaussianNode(X - pred, 'scalar', state.sigma_sq_w)
    else:
        noise = recursive.GaussianNode(X - pred, 'col', state.sigma_sq_w)

    return recursive.SumNode([recursive.ProductNode([left, right]), noise])
Exemple #2
0
def init_row_binary(data_matrix, num_iter=200):
    state = ibp.fit_model(data_matrix, num_iter=num_iter)

    left = recursive.BernoulliNode(state.Z)
    
    right = recursive.GaussianNode(state.A, 'scalar', state.sigma_sq_f)
    
    pred = np.dot(state.Z, state.A)
    X = data_matrix.sample_latent_values(pred, state.sigma_sq_n)
    noise = recursive.GaussianNode(X - pred, 'scalar', state.sigma_sq_n)
    
    return recursive.SumNode([recursive.ProductNode([left, right]), noise])
Exemple #3
0
def init_row_chain(data_matrix, num_iter=200):
    states, sigma_sq_D, sigma_sq_N = chains.fit_model(data_matrix, num_iter=num_iter)

    integ = chains.integration_matrix(data_matrix.m_orig)[data_matrix.row_ids, :]
    left = recursive.IntegrationNode(integ)
    
    temp = np.vstack([states[0, :][nax, :],
                      states[1:, :] - states[:-1, :]])
    right = recursive.GaussianNode(temp, 'scalar', sigma_sq_D)

    pred = states[data_matrix.row_ids, :]
    X = data_matrix.sample_latent_values(pred, sigma_sq_N)
    noise = recursive.GaussianNode(X - pred, 'scalar', sigma_sq_N)

    return recursive.SumNode([recursive.ProductNode([left, right]), noise])
Exemple #4
0
def init_low_rank(data_matrix, num_iter=200):
    m, n = data_matrix.m, data_matrix.n
    state, X = low_rank_poisson.fit_model(data_matrix, 2, num_iter=num_iter)
    U, V, ssq_U, ssq_N = state.U, state.V, state.ssq_U, state.ssq_N

    U /= ssq_U[nax, :] ** 0.25
    V *= ssq_U[:, nax] ** 0.25

    left = recursive.GaussianNode(U, 'col', np.sqrt(ssq_U))
    
    right = recursive.GaussianNode(V, 'row', np.sqrt(ssq_U))

    pred = np.dot(U, V)
    X = data_matrix.sample_latent_values(pred, ssq_N)
    noise = recursive.GaussianNode(X - pred, 'scalar', ssq_N)

    return recursive.SumNode([recursive.ProductNode([left, right]), noise])
Exemple #5
0
 def dummy(self):
     return recursive.SumNode([c.dummy() for c in self.children])