Exemple #1
0
  return ear
  
def mouth_aspect_ratio(mouth):

  A = dist.euclidean(mouth[1], mouth[7])
  B = dist.euclidean(mouth[2], mouth[6])
  C = dist.euclidean(mouth[3], mouth[5])
  D = dist.euclidean(mouth[0], mouth[4])
  mar = (A + B + C) / (3.0 * D)
  return mar
  
  
  
  
def head_angle(landmark,image)
  refImgPts = world.ref2dImagePoints(landmark)
  height, width, channels = image.shape
        focalLength = args["focal"] * width
        cameraMatrix = world.cameraMatrix(focalLength, (height / 2, width / 2))
        mdists = np.zeros((4, 1), dtype=np.float64)
        
  # calculate rotation and translation vector using solvePnP
  success, rotationVector, translationVector = cv2.solvePnP(face3Dmodel, refImgPts, cameraMatrix, mdists)
  noseEndPoints3D = np.array([[0, 0, 1000.0]], dtype=np.float64)
  noseEndPoint2D, jacobian = cv2.projectPoints(noseEndPoints3D, rotationVector, translationVector, cameraMatrix, mdists)

  #  draw nose line
  p1 = (int(refImgPts[0, 0]), int(refImgPts[0, 1]))
  p2 = (int(noseEndPoint2D[0, 0, 0]), int(noseEndPoint2D[0, 0, 1]))
  cv2.line(frame, p1, p2, (110, 220, 0),thickness=2, lineType=cv2.LINE_AA)
def main(image):
    detector = dlib.get_frontal_face_detector()
    predictor = dlib.shape_predictor(PREDICTOR_PATH)

    while True:
        im = cv2.imread(image)

        faces = detector(cv2.cvtColor(im, cv2.COLOR_BGR2RGB), 0)

        face3Dmodel = world.ref3DModel()

        for face in faces:
            shape = predictor(cv2.cvtColor(im, cv2.COLOR_BGR2RGB), face)

            draw(im, shape)

            refImgPts = world.ref2dImagePoints(shape)

            height, width, channel = im.shape
            focalLength = args.focal * width
            cameraMatrix = world.cameraMatrix(focalLength, (height / 2, width / 2))

            mdists = np.zeros((4, 1), dtype=np.float64)

            # calculate rotation and translation vector using solvePnP
            success, rotationVector, translationVector = cv2.solvePnP(
                face3Dmodel, refImgPts, cameraMatrix, mdists)

            noseEndPoints3D = np.array([[0, 0, 1000.0]], dtype=np.float64)
            noseEndPoint2D, jacobian = cv2.projectPoints(
                noseEndPoints3D, rotationVector, translationVector, cameraMatrix, mdists)

            # draw nose line 
            p1 = (int(refImgPts[0, 0]), int(refImgPts[0, 1]))
            p2 = (int(noseEndPoint2D[0, 0, 0]), int(noseEndPoint2D[0, 0, 1]))
            cv2.line(im, p1, p2, (110, 220, 0),
                     thickness=2, lineType=cv2.LINE_AA)

            # calculating angle
            rmat, jac = cv2.Rodrigues(rotationVector)
            angles, mtxR, mtxQ, Qx, Qy, Qz = cv2.RQDecomp3x3(rmat)
            
            print('*' * 80)
            print("Angle: ", angles)
            # print(f"Qx:{Qx}\tQy:{Qy}\tQz:{Qz}\t")
            x = np.arctan2(Qx[2][1], Qx[2][2])
            y = np.arctan2(-Qy[2][0], np.sqrt((Qy[2][1] * Qy[2][1] ) + (Qy[2][2] * Qy[2][2])))
            z = np.arctan2(Qz[0][0], Qz[1][0])
            print("AxisX: ", x)
            print("AxisY: ", y)
            print("AxisZ: ", z)
            print('*' * 80)

            gaze = "Looking: "
            if angles[1] < -15:
                gaze += "Left"
            elif angles[1] > 15:
                gaze += "Right"
            else:
                gaze += "Forward"
            cv2.putText(im, gaze, (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 80), 2)
            cv2.imshow("Head Pose", im)

        key = cv2.waitKey(10) & 0xFF
        if key == 27:
            cv2.imwrite(f"joye-{gaze}.jpg", im)
            break

    cv2.destroyAllWindows()
def main(source=0):
    detector = dlib.get_frontal_face_detector()
    predictor = dlib.shape_predictor(PREDICTOR_PATH)

    cap = cv2.VideoCapture(source)

    while True:
        GAZE = "Face Not Found"
        ret, img = cap.read()
        if not ret:
            print(f"[ERROR - System]Cannot read from source: {source}")
            break

        faces = detector(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), 0)

        face3Dmodel = world.ref3DModel()

        for face in faces:
            shape = predictor(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), face)

            draw(img, shape)

            refImgPts = world.ref2dImagePoints(shape)

            height, width, channels = img.shape
            focalLength = args.focal * width
            cameraMatrix = world.cameraMatrix(focalLength, (height / 2, width / 2))

            mdists = np.zeros((4, 1), dtype=np.float64)

            # calculate rotation and translation vector using solvePnP
            success, rotationVector, translationVector = cv2.solvePnP(
                face3Dmodel, refImgPts, cameraMatrix, mdists)

            noseEndPoints3D = np.array([[0, 0, 1000.0]], dtype=np.float64)
            noseEndPoint2D, jacobian = cv2.projectPoints(
                noseEndPoints3D, rotationVector, translationVector, cameraMatrix, mdists)

            #  draw nose line
            p1 = (int(refImgPts[0, 0]), int(refImgPts[0, 1]))
            p2 = (int(noseEndPoint2D[0, 0, 0]), int(noseEndPoint2D[0, 0, 1]))
            cv2.line(img, p1, p2, (110, 220, 0),
                     thickness=2, lineType=cv2.LINE_AA)

            # calculating euler angles
            rmat, jac = cv2.Rodrigues(rotationVector)
            angles, mtxR, mtxQ, Qx, Qy, Qz = cv2.RQDecomp3x3(rmat)

            if angles[1] < -15:
                GAZE = "Looking: Left"
            elif angles[1] > 15:
                GAZE = "Looking: Right"
            else:
                GAZE = "Forward"

        cv2.putText(img, GAZE, (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 80), 2)
        cv2.imshow("Head Pose", img)

        key = cv2.waitKey(10) & 0xFF
        if key == 27:
            break

    cap.release()
    cv2.destroyAllWindows()
Exemple #4
0
def main():
    predictor = dlib.shape_predictor(PREDICTOR_PATH)

    cap = cv2.VideoCapture(args["camsource"])

    while True:
        GAZE = "Face Not Found"
        ret, img = cap.read()
        image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        h, w, c = image.shape
        # To improve performance, optionally mark the image as not writeable to
        # pass by reference.
        image.flags.writeable = False
        results = face_detection.process(image)

        # Draw the face detection annotations on the image.
        image.flags.writeable = True
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        if not ret:
            print(
                f'[ERROR - System]Cannot read from source: {args["camsource"]}'
            )
            break

        if results.detections:
            for detection in results.detections:
                location = detection.location_data
                relative_bounding_box = location.relative_bounding_box
                x_min = relative_bounding_box.xmin
                y_min = relative_bounding_box.ymin
                widthh = relative_bounding_box.width
                heightt = relative_bounding_box.height

                absx, absy = mp_drawing._normalized_to_pixel_coordinates(
                    x_min, y_min, w, h)
                abswidth, absheight = mp_drawing._normalized_to_pixel_coordinates(
                    x_min + widthh, y_min + heightt, w, h)

            newrect = dlib.rectangle(absx, absy, abswidth, absheight)
            cv2.rectangle(image, (absx, absy), (abswidth, absheight),
                          (0, 255, 0), 2)
            shape = predictor(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), newrect)

            draw(image, shape)

            refImgPts = world.ref2dImagePoints(shape)

            height, width, channels = img.shape
            focalLength = args["focal"] * width
            cameraMatrix = world.cameraMatrix(focalLength,
                                              (height / 2, width / 2))

            mdists = np.zeros((4, 1), dtype=np.float64)

            # calculate rotation and translation vector using solvePnP
            success, rotationVector, translationVector = cv2.solvePnP(
                face3Dmodel, refImgPts, cameraMatrix, mdists)

            noseEndPoints3D = np.array([[0, 0, 1000.0]], dtype=np.float64)
            noseEndPoint2D, jacobian = cv2.projectPoints(
                noseEndPoints3D, rotationVector, translationVector,
                cameraMatrix, mdists)

            #  draw nose line
            p1 = (int(refImgPts[0, 0]), int(refImgPts[0, 1]))
            p2 = (int(noseEndPoint2D[0, 0, 0]), int(noseEndPoint2D[0, 0, 1]))
            cv2.line(image,
                     p1,
                     p2, (110, 220, 0),
                     thickness=2,
                     lineType=cv2.LINE_AA)

            # calculating euler angles
            rmat, jac = cv2.Rodrigues(rotationVector)
            angles, mtxR, mtxQ, Qx, Qy, Qz = cv2.RQDecomp3x3(rmat)
            print('*' * 80)
            # print(f"Qx:{Qx}\tQy:{Qy}\tQz:{Qz}\t")
            x = np.arctan2(Qx[2][1], Qx[2][2])
            y = np.arctan2(
                -Qy[2][0],
                np.sqrt((Qy[2][1] * Qy[2][1]) + (Qy[2][2] * Qy[2][2])))
            z = np.arctan2(Qz[0][0], Qz[1][0])
            # print("ThetaX: ", x)
            print("ThetaY: ", y)
            # print("ThetaZ: ", z)
            print('*' * 80)
            if angles[1] < -15:
                GAZE = "Looking: Left"
            elif angles[1] > 15:
                GAZE = "Looking: Right"
            else:
                GAZE = "Forward"

        cv2.putText(image, GAZE, (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 1,
                    (0, 255, 80), 2)
        cv2.imshow("Head Pose", image)

        key = cv2.waitKey(10) & 0xFF
        if key == 27:
            break

    cap.release()
    cv2.destroyAllWindows()
def main():
    predictor = dlib.shape_predictor(PREDICTOR_PATH)

    cap = cv2.VideoCapture(args["camsource"])

    while True:
        GAZE = "Face Not Found"
        ret, img = cap.read()
        if not ret:
            print(
                f'[ERROR - System]Cannot read from source: {args["camsource"]}'
            )
            break

        #faces = detector(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), 0)
        faces = face_recognition.face_locations(img, model="cnn")

        for face in faces:

            #Extracting the co cordinates to convert them into dlib rectangle object
            x = int(face[3])
            y = int(face[0])
            w = int(abs(face[1] - x))
            h = int(abs(face[2] - y))
            u = int(face[1])
            v = int(face[2])

            newrect = dlib.rectangle(x, y, u, v)
            cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
            shape = predictor(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), newrect)

            draw(img, shape)

            refImgPts = world.ref2dImagePoints(shape)

            height, width, channels = img.shape
            focalLength = args["focal"] * width
            cameraMatrix = world.cameraMatrix(focalLength,
                                              (height / 2, width / 2))

            mdists = np.zeros((4, 1), dtype=np.float64)

            # calculate rotation and translation vector using solvePnP
            success, rotationVector, translationVector = cv2.solvePnP(
                face3Dmodel, refImgPts, cameraMatrix, mdists)

            noseEndPoints3D = np.array([[0, 0, 1000.0]], dtype=np.float64)
            noseEndPoint2D, jacobian = cv2.projectPoints(
                noseEndPoints3D, rotationVector, translationVector,
                cameraMatrix, mdists)

            #  draw nose line
            p1 = (int(refImgPts[0, 0]), int(refImgPts[0, 1]))
            p2 = (int(noseEndPoint2D[0, 0, 0]), int(noseEndPoint2D[0, 0, 1]))
            cv2.line(img,
                     p1,
                     p2, (110, 220, 0),
                     thickness=2,
                     lineType=cv2.LINE_AA)

            # calculating euler angles
            rmat, jac = cv2.Rodrigues(rotationVector)
            angles, mtxR, mtxQ, Qx, Qy, Qz = cv2.RQDecomp3x3(rmat)
            print('*' * 80)
            # print(f"Qx:{Qx}\tQy:{Qy}\tQz:{Qz}\t")
            x = np.arctan2(Qx[2][1], Qx[2][2])
            y = np.arctan2(
                -Qy[2][0],
                np.sqrt((Qy[2][1] * Qy[2][1]) + (Qy[2][2] * Qy[2][2])))
            z = np.arctan2(Qz[0][0], Qz[1][0])
            # print("ThetaX: ", x)
            print("ThetaY: ", y)
            # print("ThetaZ: ", z)
            print('*' * 80)
            if angles[1] < -15:
                GAZE = "Looking: Left"
            elif angles[1] > 15:
                GAZE = "Looking: Right"
            else:
                GAZE = "Forward"

        cv2.putText(img, GAZE, (20, 20), cv2.FONT_HERSHEY_SIMPLEX, 1,
                    (0, 255, 80), 2)
        cv2.imshow("Head Pose", img)

        key = cv2.waitKey(10) & 0xFF
        if key == 27:
            break

    cap.release()
    cv2.destroyAllWindows()