Exemple #1
0
    def covar(self):
        """
        Returns
        -------
        covar : np.ndarray
            The covariance matrix for the fitting system

        """
        _pvals = np.array(self.varying_parameters())
        hess = approx_hess2(_pvals, self.nll)
        covar = np.linalg.inv(hess)
        self.setp(_pvals)
        return covar
Exemple #2
0
    def covar(self, target="nll"):
        """
        Estimates a covariance matrix based on numerical differentiation
        of either the negative log-likelihood or negative log-posterior
        probabilities.

        Parameters
        ----------
        target : str, {"nll", "nlpost"}

        Returns
        -------
        covar : np.ndarray
            The covariance matrix for the fitting system

        Notes
        -----
        Estimation of a covariance matrix can be susceptible to numeric
        instabilities. Critically evaluate the matrix before further use.
        """
        _pvals = np.array(self.varying_parameters())

        if target == "nll":
            fn = self.nll
        elif target == "nlpost":
            fn = self.nlpost

        try:
            # from statsmodels
            # the output from this for the test in test_objective.covar
            # is very similar to numdifftools.Hessian, or a chained version
            # of approx_derivative
            hess = approx_hess2(_pvals, fn)
            covar = np.linalg.inv(hess)
        except LinAlgError:
            sz = np.size(_pvals, 0)
            covar = np.full((sz, sz), np.inf)
        finally:
            self.setp(_pvals)

        return covar