def test_multipledataset_corefinement(self): # test corefinement of three datasets data361 = ReflectDataset(os.path.join(self.pth, 'e361r.txt')) data365 = ReflectDataset(os.path.join(self.pth, 'e365r.txt')) data366 = ReflectDataset(os.path.join(self.pth, 'e366r.txt')) si = SLD(2.07, name='Si') sio2 = SLD(3.47, name='SiO2') d2o = SLD(6.36, name='d2o') h2o = SLD(-0.56, name='h2o') cm3 = SLD(3.47, name='cm3') polymer = SLD(1, name='polymer') structure361 = si | sio2(10, 4) | polymer(200, 3) | d2o(0, 3) structure365 = si | structure361[1] | structure361[2] | cm3(0, 3) structure366 = si | structure361[1] | structure361[2] | h2o(0, 3) structure365[-1].rough = structure361[-1].rough structure366[-1].rough = structure361[-1].rough structure361[1].thick.setp(vary=True, bounds=(0, 20)) structure361[2].thick.setp(value=200., bounds=(200., 250.), vary=True) structure361[2].sld.real.setp(vary=True, bounds=(0, 2)) structure361[2].vfsolv.setp(value=5., bounds=(0., 100.), vary=True) model361 = ReflectModel(structure361, bkg=2e-5) model365 = ReflectModel(structure365, bkg=2e-5) model366 = ReflectModel(structure366, bkg=2e-5) model361.bkg.setp(vary=True, bounds=(1e-6, 5e-5)) model365.bkg.setp(vary=True, bounds=(1e-6, 5e-5)) model366.bkg.setp(vary=True, bounds=(1e-6, 5e-5)) objective361 = Objective(model361, data361) objective365 = Objective(model365, data365) objective366 = Objective(model366, data366) global_objective = GlobalObjective( [objective361, objective365, objective366]) # are the right numbers of parameters varying? assert_equal(len(global_objective.varying_parameters()), 7) # can we set the parameters? global_objective.setp(np.array([1e-5, 10, 212, 1, 10, 1e-5, 1e-5])) f = CurveFitter(global_objective) f.fit() indiv_chisqr = np.sum( [objective.chisqr() for objective in global_objective.objectives]) # the overall chi2 should be sum of individual chi2 global_chisqr = global_objective.chisqr() assert_almost_equal(global_chisqr, indiv_chisqr) # now check that the parameters were held in common correctly. slabs361 = structure361.slabs() slabs365 = structure365.slabs() slabs366 = structure366.slabs() assert_equal(slabs365[0:2, 0:5], slabs361[0:2, 0:5]) assert_equal(slabs366[0:2, 0:5], slabs361[0:2, 0:5]) assert_equal(slabs365[-1, 3], slabs361[-1, 3]) assert_equal(slabs366[-1, 3], slabs361[-1, 3]) # check that the residuals are the correct lengths res361 = objective361.residuals() res365 = objective365.residuals() res366 = objective366.residuals() res_global = global_objective.residuals() assert_allclose(res_global[0:len(res361)], res361, rtol=1e-5) assert_allclose(res_global[len(res361):len(res361) + len(res365)], res365, rtol=1e-5) assert_allclose(res_global[len(res361) + len(res365):], res366, rtol=1e-5) repr(global_objective)
class TestGlobalFitting(object): def setup_method(self): self.pth = os.path.dirname(os.path.abspath(__file__)) self.si = SLD(2.07, name='Si') self.sio2 = SLD(3.47, name='SiO2') self.d2o = SLD(6.36, name='d2o') self.h2o = SLD(-0.56, name='h2o') self.cm3 = SLD(3.5, name='cm3') self.polymer = SLD(2, name='polymer') self.sio2_l = self.sio2(40, 3) self.polymer_l = self.polymer(200, 3) self.structure = (self.si | self.sio2_l | self.polymer_l | self.d2o(0, 3)) fname = os.path.join(self.pth, 'c_PLP0011859_q.txt') self.dataset = ReflectDataset(fname) self.model = ReflectModel(self.structure, bkg=2e-7) self.objective = Objective(self.model, self.dataset, use_weights=False, transform=Transform('logY')) self.global_objective = GlobalObjective([self.objective]) def test_residuals_length(self): # the residuals should be the same length as the data residuals = self.global_objective.residuals() assert_equal(residuals.size, len(self.dataset)) def test_globalfitting(self): # smoke test for can the global fitting run? # also tests that global fitting gives same output as # normal fitting (for a single dataset) self.model.scale.setp(vary=True, bounds=(0.1, 2)) self.model.bkg.setp(vary=True, bounds=(1e-10, 8e-6)) self.structure[-1].rough.setp(vary=True, bounds=(0.2, 6)) self.sio2_l.thick.setp(vary=True, bounds=(0.2, 80)) self.polymer_l.thick.setp(bounds=(0.01, 400), vary=True) self.polymer_l.sld.real.setp(vary=True, bounds=(0.01, 4)) self.objective.transform = Transform('logY') starting = np.array(self.objective.parameters) with np.errstate(invalid='raise'): g = CurveFitter(self.global_objective) res_g = g.fit() # need the same starting point self.objective.setp(starting) f = CurveFitter(self.objective) res_f = f.fit() # individual and global should give the same fit. assert_almost_equal(res_g.x, res_f.x) def test_multipledataset_corefinement(self): # test corefinement of three datasets data361 = ReflectDataset(os.path.join(self.pth, 'e361r.txt')) data365 = ReflectDataset(os.path.join(self.pth, 'e365r.txt')) data366 = ReflectDataset(os.path.join(self.pth, 'e366r.txt')) si = SLD(2.07, name='Si') sio2 = SLD(3.47, name='SiO2') d2o = SLD(6.36, name='d2o') h2o = SLD(-0.56, name='h2o') cm3 = SLD(3.47, name='cm3') polymer = SLD(1, name='polymer') structure361 = si | sio2(10, 4) | polymer(200, 3) | d2o(0, 3) structure365 = si | structure361[1] | structure361[2] | cm3(0, 3) structure366 = si | structure361[1] | structure361[2] | h2o(0, 3) structure365[-1].rough = structure361[-1].rough structure366[-1].rough = structure361[-1].rough structure361[1].thick.setp(vary=True, bounds=(0, 20)) structure361[2].thick.setp(value=200., bounds=(200., 250.), vary=True) structure361[2].sld.real.setp(vary=True, bounds=(0, 2)) structure361[2].vfsolv.setp(value=5., bounds=(0., 100.), vary=True) model361 = ReflectModel(structure361, bkg=2e-5) model365 = ReflectModel(structure365, bkg=2e-5) model366 = ReflectModel(structure366, bkg=2e-5) model361.bkg.setp(vary=True, bounds=(1e-6, 5e-5)) model365.bkg.setp(vary=True, bounds=(1e-6, 5e-5)) model366.bkg.setp(vary=True, bounds=(1e-6, 5e-5)) objective361 = Objective(model361, data361) objective365 = Objective(model365, data365) objective366 = Objective(model366, data366) global_objective = GlobalObjective( [objective361, objective365, objective366]) # are the right numbers of parameters varying? assert_equal(len(global_objective.varying_parameters()), 7) # can we set the parameters? global_objective.setp(np.array([1e-5, 10, 212, 1, 10, 1e-5, 1e-5])) f = CurveFitter(global_objective) f.fit() indiv_chisqr = np.sum( [objective.chisqr() for objective in global_objective.objectives]) # the overall chi2 should be sum of individual chi2 global_chisqr = global_objective.chisqr() assert_almost_equal(global_chisqr, indiv_chisqr) # now check that the parameters were held in common correctly. slabs361 = structure361.slabs() slabs365 = structure365.slabs() slabs366 = structure366.slabs() assert_equal(slabs365[0:2, 0:5], slabs361[0:2, 0:5]) assert_equal(slabs366[0:2, 0:5], slabs361[0:2, 0:5]) assert_equal(slabs365[-1, 3], slabs361[-1, 3]) assert_equal(slabs366[-1, 3], slabs361[-1, 3]) # check that the residuals are the correct lengths res361 = objective361.residuals() res365 = objective365.residuals() res366 = objective366.residuals() res_global = global_objective.residuals() assert_allclose(res_global[0:len(res361)], res361, rtol=1e-5) assert_allclose(res_global[len(res361):len(res361) + len(res365)], res365, rtol=1e-5) assert_allclose(res_global[len(res361) + len(res365):], res366, rtol=1e-5) repr(global_objective)