def _process_partial_data(self, partial_requested_data):
        '''
        This function is always executed after managing the response of each URL of this Data Source. 
        The data should be processed from the external structure to the form of a DataFrame. 

        Parameters
        ----------
        partial_requested_data : csv
            it is the requested CSV of one URL.

        Returns
        -------
        pd.DataFrame
            a DataFrame with daily [Date] as row indexer and [Region, Data Item] as column multiindexer.
        '''
        region_codes_ine = Regions._get_property(self.regions, self.__class__.REGION_REPRESENTATION)
        codesine_regions_dict = dict(zip(region_codes_ine,self.regions))
        
        df = partial_requested_data[(partial_requested_data['cod_ine_ambito'].isin(region_codes_ine)) & (partial_requested_data['nombre_sexo'] == 'todos') & (partial_requested_data['nombre_gedad'] == 'todos')]
        df.cod_ine_ambito = df.cod_ine_ambito.astype(int).astype(str).apply(lambda x: x.zfill(2)).replace(codesine_regions_dict)
        df.rename(columns={'cod_ine_ambito':'Region'},inplace=True)
        df.drop(['ambito','cod_ambito','nombre_ambito','cod_sexo','nombre_sexo','cod_gedad','nombre_gedad'],axis='columns',errors='ignore',inplace=True)
        df = df[['Region','fecha_defuncion']+self.data_items]
        df.set_index(['Region'],inplace=True)
        df = df.pivot_table(index='fecha_defuncion',columns='Region').swaplevel(i=0,j=1,axis='columns')
        df.columns.rename("Item",level=1,inplace=True)
        df.set_index(pd.to_datetime(df.index, format="%Y-%m-%d"),inplace=True)  
        return df
Exemple #2
0
    def __get_stations_by_regions(self):
        """
        Gets the aemet stations per region

        Returns
        -------
        dict {str : str}
            a dictionary with instance regions as keys, and a string with the aemet stations separated by commas as values.

        Notes
        -----
        * It is used for completing 'idema' argument in the AEMET API function (https://opendata.aemet.es/dist/index.html?#!/valores-climatologicos/Climatolog%C3%ADas_diarias)
        """
        aemet_stations = Regions._get_property(
            self.regions, self.__class__.REGION_REPRESENTATION)
        str_aemet_stations = {}

        pos_region = 0
        for stations in aemet_stations:
            str_aemet_stations[self.regions[pos_region]] = ''
            for station in stations:
                str_aemet_stations[
                    self.regions[pos_region]] = str_aemet_stations[
                        self.regions[pos_region]] + "," + station
            str_aemet_stations[self.regions[pos_region]] = str_aemet_stations[
                self.regions[pos_region]][1:]
            pos_region = pos_region + 1

        return str_aemet_stations
Exemple #3
0
    def __get_regions_by_stations(self):
        """
        Gets the region per aemet station.

        Returns
        -------
        dict {str : str}
            a dictionary with aemet stations as keys, and instance regions as values.
        """
        aemet_stations = Regions._get_property(
            self.regions, self.__class__.REGION_REPRESENTATION)
        region_by_aemet_station = {}

        pos_region = 0
        for stations in aemet_stations:
            for station in stations:
                region_by_aemet_station[station] = self.regions[pos_region]
            pos_region = pos_region + 1

        return region_by_aemet_station
Exemple #4
0
    def _process_partial_data(self, partial_requested_data):
        '''
        This function is always executed after managing the response of each URL of this Data Source. 
        The data should be processed from the external structure to the form of a DataFrame. 

        Parameters
        ----------
        partial_requested_data : json
            it is the requested JSON of one URL.

        Returns
        -------
        pd.DataFrame
            a DataFrame with [Region] as row indexer and [Data Item] as column indexer.
        '''

        if self.__class__.DATA_ITEMS_INFO[self.data_items[
                self.processed_urls]]['funcion'] == 'DATOS_TABLA':

            df = pd.json_normalize(partial_requested_data, 'Data', ['Nombre'])
            df.Nombre = df.Nombre.replace(
                dict(
                    zip(
                        Regions._get_property(
                            self.regions,
                            self.__class__.REGION_REPRESENTATION),
                        self.regions)),
                regex=True
            )  # some regions contains commas, fix it through configuration file

            # json field 'Nombre' is splitted into Region, SubItem and Item columns
            # SubItem is a subdivision of the seeked Item

            df[['Region', 'SubItem',
                'Item']] = df['Nombre'].str.split(", ", n=2, expand=True)

            # if in Region we find the word 'sexo', we should interchange Region and Subitem Columns
            if any(df.Region.str.contains(pat='sexo', case=False, regex=True)):
                df[['Region', 'SubItem']] = df[['SubItem', 'Region']]
Exemple #5
0
    def _process_partial_data(self, partial_requested_data):
        '''
        This function is always executed after managing the response of each URL of this Data Source. 
        The data should be processed from the external structure to the form of a DataFrame. 

        Parameters
        ----------
        partial_requested_data : csv
            it is the requested CSV of one URL.

        Returns
        -------
        pd.DataFrame
            a DataFrame with daily [Date] as row indexer and [Region, Data Item] as column multiindexer.
        '''

        region_representation_dict = Regions._get_property(
            self.regions, self.__class__.REGION_REPRESENTATION)
        region_population_dict = Regions.get_regions_population()

        representation_ccaa_dict = {}
        representation_provinces_dict = {}
        representation_spain_dict = {'00': 'España'}
        for i, r in enumerate(self.regions):
            code_ine = region_representation_dict[i]
            if 'CA' in r or code_ine == 0:
                representation_ccaa_dict[code_ine] = r
            else:
                representation_provinces_dict[code_ine] = r

        # Adaptation to vaccines dataset
        representation_ccaa_vac_dict = {
            'Totales': 'España',
            'Andalucía': 'CA Andalucía',
            'Aragón': 'CA Aragón',
            'Asturias': 'CA Principado de Asturias',
            'Baleares': 'CA Islas Baleares',
            'Canarias': 'CA Canarias',
            'Cantabria': 'CA Cantabria',
            'Castilla y Leon': 'CA Castilla y León',
            'Castilla La Mancha': 'CA Castilla-La Mancha',
            'Cataluña': 'CA Cataluña',
            'C. Valenciana': 'CA Comunidad Valenciana',
            'Extremadura': 'CA Extremadura',
            'Galicia': 'CA Galicia',
            'Madrid': 'CA Comunidad de Madrid',
            'Murcia': 'CA Región de Murcia',
            'Navarra': 'CA Comunidad Foral de Navarra',
            'País Vasco': 'CA País Vasco',
            'La Rioja': 'CA La Rioja',
            'Ceuta': 'CA Ceuta',
            'Melilla': 'CA Melilla'
        }

        # Fix esCOVID19data error
        if "intensive_care_per_1000000" in partial_requested_data.columns:
            partial_requested_data = partial_requested_data.rename(
                columns={
                    'intensive_care_per_1000000': 'intensive_care_per_100000'
                })

        # Vaccine
        if "date_pub" in partial_requested_data.columns:
            df = partial_requested_data.rename(
                columns={
                    "ccaa": "Region",
                    'date_pub': 'date',
                    'Dosis entregadas': 'vaccine_provided',
                    'Dosis administradas': 'vaccine_supplied',
                    '% sobre entregadas': 'vaccine_supplied_inc'
                })
            df = df[~df.Region.str.contains('Fuerzas Armadas')]
            df['Region'] = df['Region'].map(representation_ccaa_vac_dict)

            df['date'] = pd.to_datetime(df['date'], dayfirst=True)
            df.set_index(df.Region.astype(str).str.zfill(2),
                         inplace=True,
                         drop=True)

        else:
            df = partial_requested_data.rename(columns={"ine_code": "Region"})
            df.set_index(
                df.Region.astype(str).str.zfill(2), inplace=True, drop=True
            )  # zfill used to change numbers 1, 2, 3... tu padded strings "01", "02"... (code ine)

        df['date'] = pd.to_datetime(df['date'], format='%Y-%m-%d')
        df.sort_values(['date'], inplace=True)
        df = df.drop([
            'Region', 'CCAA', 'ccaa', 'province', 'source_name', 'source',
            'comments'
        ],
                     axis='columns',
                     errors='ignore')

        # Adaptation of dataitems
        if "province" in partial_requested_data.columns:
            df.rename(index=representation_provinces_dict, inplace=True)
        elif "ccaa" in partial_requested_data.columns and "date_pub" not in partial_requested_data.columns:
            df.rename(index=representation_ccaa_dict, inplace=True)

        df = df.pivot_table(index='date',
                            columns='Region').swaplevel(i=0,
                                                        j=1,
                                                        axis='columns')
        df.columns.rename("Item", level=1, inplace=True)
        df.set_index(pd.to_datetime(df.index, format="%Y-%m-%d"), inplace=True)

        if "date_pub" in partial_requested_data.columns:
            for i in df.columns.levels[0]:
                df[i, 'pob_vaccine_supplied_inc'] = (
                    (df[i, 'vaccine_supplied'] * 100) /
                    region_population_dict[i]).round(2)
                df[i,
                   'vaccine_supplied_inc'] = df[i,
                                                'vaccine_supplied_inc'] * 100

        if ("ccaa" in partial_requested_data.columns
                or "province" in partial_requested_data.columns
            ) and "date_pub" not in partial_requested_data.columns:
            for i in df.columns.levels[0]:
                df[i, 'accumulated_lethality'] = (
                    df[i, 'deceased'] / df[i, 'cases_accumulated']).round(5)
                df[i, 'daily_deaths_inc'] = df[i, 'daily_deaths_inc'] * 100

        if "ccaa" in partial_requested_data.columns and "date_pub" not in partial_requested_data.columns:
            # Adaptation of Spain region
            try:
                sum_dataitems = df.sum(axis=1, level=1)
                df['España', 'num_casos'] = sum_dataitems['num_casos']
                df['España', 'num_casos_prueba_pcr'] = sum_dataitems[
                    'num_casos_prueba_pcr']
                df['España', 'num_casos_prueba_test_ac'] = sum_dataitems[
                    'num_casos_prueba_test_ac']
                df['España', 'num_casos_prueba_ag'] = sum_dataitems[
                    'num_casos_prueba_ag']
                df['España', 'num_casos_prueba_elisa'] = sum_dataitems[
                    'num_casos_prueba_elisa']
                df['España', 'num_casos_prueba_desconocida'] = sum_dataitems[
                    'num_casos_prueba_desconocida']
                df['España', 'daily_deaths'] = sum_dataitems['daily_deaths']

                df['España',
                   'cases_accumulated'] = sum_dataitems['cases_accumulated']
                df['España', 'cases_accumulated_PCR'] = sum_dataitems[
                    'cases_accumulated_PCR']
                df['España', 'hospitalized'] = sum_dataitems['hospitalized']
                df['España',
                   'intensive_care'] = sum_dataitems['intensive_care']
                df['España', 'deceased'] = sum_dataitems['deceased']
                df['España', 'recovered'] = sum_dataitems['recovered']

                # Ventanas de tiempo
                df['España',
                   'daily_deaths_avg7'] = sum_dataitems['daily_deaths_avg7']
                df['España', 'cases_14days'] = sum_dataitems['cases_14days']

                # Medias

                def media_by_param(df, param, out, days):
                    df['España', out] = 0
                    cont = 0
                    datainv = df.reindex(index=df.index[::-1])
                    for i, idx in enumerate(datainv.index):
                        valor = 0
                        for idxx in datainv.index[i:]:
                            if cont < days:
                                valor += df.loc[idxx, ('España', param)]
                                cont = cont + 1
                        media = valor / days
                        df.loc[idx, ('España', out)] = media
                        cont = 0

                media_by_param(df, 'num_casos', 'daily_cases_avg7', 7)
                media_by_param(df, 'num_casos_prueba_pcr',
                               'num_casos_prueba_pcr_avg7', 7)
                media_by_param(df, 'daily_deaths', 'daily_deaths_avg7', 7)
                media_by_param(df, 'daily_deaths', 'daily_deaths_avg3', 3)

                # IA
                def ia_by_param(df, param, out, days):
                    df['España', out] = 0
                    cont = 0
                    datainv = df.reindex(index=df.index[::-1])
                    for i, idx in enumerate(datainv.index):
                        valor = 0
                        for idxx in datainv.index[i:]:
                            if cont < days:
                                valor += df.loc[idxx, ('España', param)]
                                cont = cont + 1
                        ia = ((valor * 100000) /
                              region_population_dict['España']).round(2)
                        df.loc[idx, ('España', out)] = ia
                        cont = 0

                ia_by_param(df, 'num_casos', 'ia14', 14)

                # Lethality

                df['España', 'accumulated_lethality'] = (
                    df['España', 'deceased'] /
                    df['España', 'cases_accumulated']).round(2)

                # 100k

                df['España', 'cases_per_cienmil'] = (
                    (df['España', 'cases_accumulated'] * 100000) /
                    region_population_dict['España']).round(2)
                df['España', 'intensive_care_per_100000'] = (
                    (df['España', 'intensive_care'] * 100000) /
                    region_population_dict['España']).round(2)
                df['España', 'hospitalized_per_100000'] = (
                    (df['España', 'hospitalized'] * 100000) /
                    region_population_dict['España']).round(2)
                df['España', 'deceassed_per_100000'] = (
                    (df['España', 'deceased'] * 100000) /
                    region_population_dict['España']).round(2)

                # percent

                def percent_by_param(df, param, out, days):
                    df['España', out] = 0
                    cont = 0
                    datainv = df.reindex(index=df.index[::-1])
                    for i, idx in enumerate(datainv.index):
                        valor = 0
                        for idxx in datainv.index[i + 1:]:
                            if cont < days:
                                valor += df.loc[idxx, ('España', param)]
                                cont = cont + 1
                        percent = (df.loc[idx,
                                          ('España', param)] * 100) / valor
                        df.loc[idx, ('España', out)] = percent.round(2)
                        cont = 0

                percent_by_param(df, 'daily_deaths', 'daily_deaths_inc', 1)

            except KeyError as e:
                print("Spain dataitems ERROR: ", e)

        return df