def testCircleToCMonomodalSyNEM(lambdaParam, maxOuterIter): fname0='data/circle.png' #fname0='data/C_trans.png' fname1='data/C.png' nib_moving=plt.imread(fname0) nib_fixed=plt.imread(fname1) moving=nib_moving[:,:,0] fixed=nib_fixed[:,:,1] moving=(moving-moving.min())/(moving.max() - moving.min()) fixed=(fixed-fixed.min())/(fixed.max() - fixed.min()) level=3 maskMoving=moving>0 maskFixed=fixed>0 movingPyramid=[img for img in rcommon.pyramid_gaussian_2D(moving, level, maskMoving)] fixedPyramid=[img for img in rcommon.pyramid_gaussian_2D(fixed, level, maskFixed)] rcommon.plotOverlaidPyramids(movingPyramid, fixedPyramid) displacementList=[] displacement, dinv=estimateMonomodalSyNField2DMultiScale(movingPyramid, fixedPyramid, lambdaParam, maxOuterIter, 0,displacementList) inverse=np.array(tf.invert_vector_field(displacement, 0.75, 300, 1e-7)) residual, stats=tf.compose_vector_fields(displacement, inverse) residual=np.array(residual) warpPyramid=[rcommon.warpImage(movingPyramid[i], displacementList[i]) for i in range(level+1)] rcommon.plotOverlaidPyramids(warpPyramid, fixedPyramid) rcommon.overlayImages(warpPyramid[0], fixedPyramid[0]) rcommon.plotDiffeomorphism(displacement, inverse, residual, '',7)
def testEstimateMonomodalDiffeomorphicField2DMultiScale(lambdaParam): fname0='IBSR_01_to_02.nii.gz' fname1='data/t1/IBSR18/IBSR_02/IBSR_02_ana_strip.nii.gz' nib_moving = nib.load(fname0) nib_fixed= nib.load(fname1) moving=nib_moving.get_data().squeeze().astype(np.float64) fixed=nib_fixed.get_data().squeeze().astype(np.float64) moving=np.copy(moving, order='C') fixed=np.copy(fixed, order='C') sl=moving.shape sr=fixed.shape level=5 #---sagital--- moving=moving[sl[0]//2,:,:].copy() fixed=fixed[sr[0]//2,:,:].copy() #---coronal--- #moving=moving[:,sl[1]//2,:].copy() #fixed=fixed[:,sr[1]//2,:].copy() #---axial--- #moving=moving[:,:,sl[2]//2].copy() #fixed=fixed[:,:,sr[2]//2].copy() maskMoving=moving>0 maskFixed=fixed>0 movingPyramid=[img for img in rcommon.pyramid_gaussian_2D(moving, level, maskMoving)] fixedPyramid=[img for img in rcommon.pyramid_gaussian_2D(fixed, level, maskFixed)] rcommon.plotOverlaidPyramids(movingPyramid, fixedPyramid) displacementList=[] maxIter=200 displacement, inverse=estimateMonomodalDiffeomorphicField2DMultiScale(movingPyramid, fixedPyramid, lambdaParam, maxIter, 0,displacementList) residual=tf.compose_vector_fields(displacement, inverse) warpPyramid=[rcommon.warpImage(movingPyramid[i], displacementList[i]) for i in range(level+1)] rcommon.plotOverlaidPyramids(warpPyramid, fixedPyramid) rcommon.overlayImages(warpPyramid[0], fixedPyramid[0]) rcommon.plotDiffeomorphism(displacement, inverse, residual)
def testCircleToCMonomodalSyNEM(lambdaParam, maxOuterIter): fname0 = 'data/circle.png' #fname0='data/C_trans.png' fname1 = 'data/C.png' nib_moving = plt.imread(fname0) nib_fixed = plt.imread(fname1) moving = nib_moving[:, :, 0] fixed = nib_fixed[:, :, 1] moving = (moving - moving.min()) / (moving.max() - moving.min()) fixed = (fixed - fixed.min()) / (fixed.max() - fixed.min()) level = 3 maskMoving = moving > 0 maskFixed = fixed > 0 movingPyramid = [ img for img in rcommon.pyramid_gaussian_2D(moving, level, maskMoving) ] fixedPyramid = [ img for img in rcommon.pyramid_gaussian_2D(fixed, level, maskFixed) ] rcommon.plotOverlaidPyramids(movingPyramid, fixedPyramid) displacementList = [] displacement, dinv = estimateMonomodalSyNField2DMultiScale( movingPyramid, fixedPyramid, lambdaParam, maxOuterIter, 0, displacementList) inverse = np.array(tf.invert_vector_field(displacement, 0.75, 300, 1e-7)) residual, stats = tf.compose_vector_fields(displacement, inverse) residual = np.array(residual) warpPyramid = [ rcommon.warpImage(movingPyramid[i], displacementList[i]) for i in range(level + 1) ] rcommon.plotOverlaidPyramids(warpPyramid, fixedPyramid) rcommon.overlayImages(warpPyramid[0], fixedPyramid[0]) rcommon.plotDiffeomorphism(displacement, inverse, residual, '', 7)
def estimateNewMonomodalDiffeomorphicField2D(moving, fixed, lambdaParam, maxOuterIter, previousDisplacement, previousDisplacementInverse): ''' Warning: in the monomodal case, the parameter lambda must be significantly lower than in the multimodal case. Try lambdaParam=1, as opposed as lambdaParam=150 used in the multimodal case ''' innerTolerance = 1e-4 displacement = np.zeros(shape=(moving.shape) + (2, ), dtype=np.float64) gradientField = np.empty(shape=(moving.shape) + (2, ), dtype=np.float64) totalDisplacement = np.zeros(shape=(moving.shape) + (2, ), dtype=np.float64) totalDisplacementInverse = np.zeros(shape=(moving.shape) + (2, ), dtype=np.float64) if (previousDisplacement != None): totalDisplacement[...] = previousDisplacement totalDisplacementInverse[...] = previousDisplacementInverse outerIter = 0 framesToCapture = 5 maxOuterIter = framesToCapture * ( (maxOuterIter + framesToCapture - 1) / framesToCapture) itersPerCapture = maxOuterIter / framesToCapture plt.figure() while (outerIter < maxOuterIter): outerIter += 1 print 'Outer iter:', outerIter warped = np.array(tf.warp_image(moving, totalDisplacement, None)) if ((outerIter == 1) or (outerIter % itersPerCapture == 0)): plt.subplot(1, framesToCapture + 1, 1 + outerIter / itersPerCapture) rcommon.overlayImages(warped, fixed, False) plt.title('Iter:' + str(outerIter - 1)) sigmaField = np.ones_like(warped, dtype=np.float64) deltaField = fixed - warped gradientField[:, :, 0], gradientField[:, :, 1] = sp.gradient(warped) maxVariation = 1 + innerTolerance innerIter = 0 displacement[...] = 0 maxInnerIter = 200 while ((maxVariation > innerTolerance) and (innerIter < maxInnerIter)): innerIter += 1 maxVariation = tf.iterateDisplacementField2DCYTHON( deltaField, sigmaField, gradientField, lambdaParam, displacement, None) #maxDisplacement=np.max(np.abs(displacement)) expd, invexpd = tf.vector_field_exponential(displacement, True) totalDisplacement, stats = tf.compose_vector_fields( displacement, totalDisplacement) #totalDisplacement=np.array(totalDisplacement) totalDisplacementInverse, stats = tf.compose_vector_fields( totalDisplacementInverse, invexpd) #totalDisplacementInverse=np.array(totalDisplacementInverse) #if(maxDisplacement<outerTolerance): #break print "Iter: ", innerIter, "Max variation:", maxVariation return totalDisplacement, totalDisplacementInverse
def testEstimateECQMMFMultimodalDeformationField2DMultiScale_synthetic(): ##################parameters############ maxGTDisplacement=2 maxPyramidLevel=0 lambdaMeasureField=0.02 lambdaDisplacement=200 mu=0.001 maxOuterIter=20 maxInnerIter=50 tolerance=1e-5 displacementList=[] #######################################3 #fname0='IBSR_01_to_02.nii.gz' #fname1='data/t1/IBSR18/IBSR_02/IBSR_02_ana_strip.nii.gz' fnameMoving='data/t2/t2_icbm_normal_1mm_pn0_rf0_peeled.nii.gz' fnameFixed='data/t1/t1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz' nib_moving = nib.load(fnameMoving) nib_fixed = nib.load(fnameFixed) moving=nib_moving.get_data().squeeze().astype(np.float64) fixed=nib_fixed.get_data().squeeze().astype(np.float64) sm=moving.shape sf=fixed.shape #---coronal--- moving=moving[:,sm[1]//2,:].copy() fixed=fixed[:,sf[1]//2,:].copy() moving=(moving-moving.min())/(moving.max()-moving.min()) fixed=(fixed-fixed.min())/(fixed.max()-fixed.min()) #----apply synthetic deformation field to fixed image GT=rcommon.createDeformationField_type2(fixed.shape[0], fixed.shape[1], maxGTDisplacement) fixed=rcommon.warpImage(fixed,GT) maskMoving=moving>0 maskFixed=fixed>0 movingPyramid=[img for img in rcommon.pyramid_gaussian_2D(moving, maxPyramidLevel, maskMoving)] fixedPyramid=[img for img in rcommon.pyramid_gaussian_2D(fixed, maxPyramidLevel, maskFixed)] plt.figure() plt.subplot(1,2,1) plt.imshow(moving, cmap=plt.cm.gray) plt.title('Moving') plt.subplot(1,2,2) plt.imshow(fixed, cmap=plt.cm.gray) plt.title('Fixed') rcommon.plotOverlaidPyramids(movingPyramid, fixedPyramid) displacement=estimateECQMMFMultimodalDeformationField2DMultiScale(fixedPyramid, movingPyramid, lambdaMeasureField, lambdaDisplacement, mu, maxOuterIter, maxInnerIter, tolerance, 0,displacementList) warpedPyramid=[rcommon.warpImage(movingPyramid[i], displacementList[i]) for i in range(maxPyramidLevel+1)] rcommon.plotOverlaidPyramids(warpedPyramid, fixedPyramid) rcommon.overlayImages(warpedPyramid[0], fixedPyramid[0]) rcommon.plotDeformationField(displacement) displacement[...,0]*=(maskMoving + maskFixed) displacement[...,1]*=(maskMoving + maskFixed) nrm=np.sqrt(displacement[...,0]**2 + displacement[...,1]**2) maxNorm=np.max(nrm) rcommon.plotDeformationField(displacement) residual=((displacement-GT))**2 meanDisplacementError=np.sqrt(residual.sum(2)*(maskMoving + maskFixed)).mean() stdevDisplacementError=np.sqrt(residual.sum(2)*(maskMoving + maskFixed)).std() print 'Max global displacement: ', maxNorm print 'Mean displacement error: ', meanDisplacementError,'(',stdevDisplacementError,')'
def displayRegistrationResultDiff(): fnameMoving = 'data/affineRegistered/templateT1ToIBSR01T1.nii.gz' fnameFixed = 'data/t1/IBSR18/IBSR_01/IBSR_01_ana_strip.nii.gz' nib_fixed = nib.load(fnameFixed) fixed = nib_fixed.get_data().squeeze() fixed = np.copy(fixed, order='C') nib_moving = nib.load(fnameMoving) moving = nib_moving.get_data().squeeze() moving = np.copy(moving, order='C') fnameDisplacement = 'displacement_templateT1ToIBSR01T1_diffMulti.npy' fnameWarped = 'warped_templateT1ToIBSR01T1_diffMulti.npy' displacement = np.load(fnameDisplacement) warped = np.load(fnameWarped) sh = moving.shape shown = warped f = rcommon.overlayImages(shown[:, sh[1] // 4, :], fixed[:, sh[1] // 4, :]) f = rcommon.overlayImages(shown[:, sh[1] // 2, :], fixed[:, sh[1] // 2, :]) f = rcommon.overlayImages(shown[:, 3 * sh[1] // 4, :], fixed[:, 3 * sh[1] // 4, :]) f = rcommon.overlayImages(shown[sh[0] // 4, :, :], fixed[sh[0] // 4, :, :]) f = rcommon.overlayImages(shown[sh[0] // 2, :, :], fixed[sh[0] // 2, :, :]) f = rcommon.overlayImages(shown[3 * sh[0] // 4, :, :], fixed[3 * sh[0] // 4, :, :]) f = rcommon.overlayImages(shown[:, :, sh[2] // 4], fixed[:, :, sh[2] // 4]) f = rcommon.overlayImages(shown[:, :, sh[2] // 2], fixed[:, :, sh[2] // 2]) f = rcommon.overlayImages(shown[:, :, 3 * sh[2] // 4], fixed[:, :, 3 * sh[2] // 4]) del f del displacement
def displayRegistrationResultDiff(): fnameMoving='data/affineRegistered/templateT1ToIBSR01T1.nii.gz' fnameFixed='data/t1/IBSR18/IBSR_01/IBSR_01_ana_strip.nii.gz' nib_fixed = nib.load(fnameFixed) fixed=nib_fixed.get_data().squeeze() fixed=np.copy(fixed,order='C') nib_moving = nib.load(fnameMoving) moving=nib_moving.get_data().squeeze() moving=np.copy(moving, order='C') fnameDisplacement='displacement_templateT1ToIBSR01T1_diffMulti.npy' fnameWarped='warped_templateT1ToIBSR01T1_diffMulti.npy' displacement=np.load(fnameDisplacement) warped=np.load(fnameWarped) sh=moving.shape shown=warped f=rcommon.overlayImages(shown[:,sh[1]//4,:], fixed[:,sh[1]//4,:]) f=rcommon.overlayImages(shown[:,sh[1]//2,:], fixed[:,sh[1]//2,:]) f=rcommon.overlayImages(shown[:,3*sh[1]//4,:], fixed[:,3*sh[1]//4,:]) f=rcommon.overlayImages(shown[sh[0]//4,:,:], fixed[sh[0]//4,:,:]) f=rcommon.overlayImages(shown[sh[0]//2,:,:], fixed[sh[0]//2,:,:]) f=rcommon.overlayImages(shown[3*sh[0]//4,:,:], fixed[3*sh[0]//4,:,:]) f=rcommon.overlayImages(shown[:,:,sh[2]//4], fixed[:,:,sh[2]//4]) f=rcommon.overlayImages(shown[:,:,sh[2]//2], fixed[:,:,sh[2]//2]) f=rcommon.overlayImages(shown[:,:,3*sh[2]//4], fixed[:,:,3*sh[2]//4]) del f del displacement
def testEstimateMonomodalSyNField2DMultiScale(lambdaParam): fname0 = 'IBSR_01_to_02.nii.gz' fname1 = 'data/t1/IBSR18/IBSR_02/IBSR_02_ana_strip.nii.gz' nib_moving = nib.load(fname0) nib_fixed = nib.load(fname1) moving = nib_moving.get_data().squeeze() fixed = nib_fixed.get_data().squeeze() moving = np.copy(moving, order='C') fixed = np.copy(fixed, order='C') sl = moving.shape sr = fixed.shape level = 5 #---sagital--- moving = moving[sl[0] // 2, :, :].copy() fixed = fixed[sr[0] // 2, :, :].copy() #---coronal--- #moving=moving[:,sl[1]//2,:].copy() #fixed=fixed[:,sr[1]//2,:].copy() #---axial--- #moving=moving[:,:,sl[2]//2].copy() #fixed=fixed[:,:,sr[2]//2].copy() maskMoving = moving > 0 maskFixed = fixed > 0 movingPyramid = [ img for img in rcommon.pyramid_gaussian_2D(moving, level, maskMoving) ] fixedPyramid = [ img for img in rcommon.pyramid_gaussian_2D(fixed, level, maskFixed) ] rcommon.plotOverlaidPyramids(movingPyramid, fixedPyramid) displacementList = [] maxIter = 200 displacement = estimateMonomodalSyNField2DMultiScale( movingPyramid, fixedPyramid, lambdaParam, maxIter, 0, displacementList) warpPyramid = [ rcommon.warpImage(movingPyramid[i], displacementList[i]) for i in range(level + 1) ] rcommon.plotOverlaidPyramids(warpPyramid, fixedPyramid) rcommon.overlayImages(warpPyramid[0], fixedPyramid[0]) rcommon.plotDeformationField(displacement) nrm = np.sqrt(displacement[..., 0]**2 + displacement[..., 1]**2) maxNorm = np.max(nrm) displacement[..., 0] *= (maskMoving + maskFixed) displacement[..., 1] *= (maskMoving + maskFixed) rcommon.plotDeformationField(displacement) #nrm=np.sqrt(displacement[...,0]**2 + displacement[...,1]**2) #plt.figure() #plt.imshow(nrm) print 'Max global displacement: ', maxNorm
def estimateNewMonomodalDiffeomorphicField2D(moving, fixed, lambdaParam, maxOuterIter, previousDisplacement, previousDisplacementInverse): ''' Warning: in the monomodal case, the parameter lambda must be significantly lower than in the multimodal case. Try lambdaParam=1, as opposed as lambdaParam=150 used in the multimodal case ''' innerTolerance=1e-4 displacement =np.zeros(shape=(moving.shape)+(2,), dtype=np.float64) gradientField =np.empty(shape=(moving.shape)+(2,), dtype=np.float64) totalDisplacement=np.zeros(shape=(moving.shape)+(2,), dtype=np.float64) totalDisplacementInverse=np.zeros(shape=(moving.shape)+(2,), dtype=np.float64) if(previousDisplacement!=None): totalDisplacement[...]=previousDisplacement totalDisplacementInverse[...]=previousDisplacementInverse outerIter=0 framesToCapture=5 maxOuterIter=framesToCapture*((maxOuterIter+framesToCapture-1)/framesToCapture) itersPerCapture=maxOuterIter/framesToCapture plt.figure() while(outerIter<maxOuterIter): outerIter+=1 print 'Outer iter:', outerIter warped=np.array(tf.warp_image(moving, totalDisplacement, None)) if((outerIter==1) or (outerIter%itersPerCapture==0)): plt.subplot(1,framesToCapture+1, 1+outerIter/itersPerCapture) rcommon.overlayImages(warped, fixed, False) plt.title('Iter:'+str(outerIter-1)) sigmaField=np.ones_like(warped, dtype=np.float64) deltaField=fixed-warped gradientField[:,:,0], gradientField[:,:,1]=sp.gradient(warped) maxVariation=1+innerTolerance innerIter=0 displacement[...]=0 maxInnerIter=200 while((maxVariation>innerTolerance)and(innerIter<maxInnerIter)): innerIter+=1 maxVariation=tf.iterateDisplacementField2DCYTHON(deltaField, sigmaField, gradientField, lambdaParam, displacement, None) #maxDisplacement=np.max(np.abs(displacement)) expd, invexpd=tf.vector_field_exponential(displacement, True) totalDisplacement, stats=tf.compose_vector_fields(displacement, totalDisplacement) #totalDisplacement=np.array(totalDisplacement) totalDisplacementInverse, stats=tf.compose_vector_fields(totalDisplacementInverse, invexpd) #totalDisplacementInverse=np.array(totalDisplacementInverse) #if(maxDisplacement<outerTolerance): #break print "Iter: ",innerIter, "Max variation:",maxVariation return totalDisplacement, totalDisplacementInverse
def test_optimizer_monomodal_2d(): r''' Classical Circle-To-C experiment for 2D Monomodal registration ''' fname_moving = 'data/circle.png' fname_fixed = 'data/C.png' moving = plt.imread(fname_moving) fixed = plt.imread(fname_fixed) moving = moving[:, :, 0].astype(np.float64) fixed = fixed[:, :, 0].astype(np.float64) moving = np.copy(moving, order='C') fixed = np.copy(fixed, order='C') moving = (moving - moving.min()) / (moving.max() - moving.min()) fixed = (fixed - fixed.min()) / (fixed.max() - fixed.min()) ################Configure and run the Optimizer##################### max_iter = [i for i in [20, 100, 100, 100]] similarity_metric = SSDMetric(2, { 'symmetric': True, 'lambda': 5.0, 'stepType': SSDMetric.GAUSS_SEIDEL_STEP }) optimizer_parameters = { 'max_iter': max_iter, 'inversion_iter': 40, 'inversion_tolerance': 1e-3, 'report_status': True } update_rule = UpdateRule.Composition() registration_optimizer = SymmetricRegistrationOptimizer( fixed, moving, None, None, similarity_metric, update_rule, optimizer_parameters) registration_optimizer.optimize() #######################show results################################# displacement = registration_optimizer.get_forward() direct_inverse = registration_optimizer.get_backward() moving_to_fixed = np.array(tf.warp_image(moving, displacement)) fixed_to_moving = np.array(tf.warp_image(fixed, direct_inverse)) rcommon.overlayImages(moving_to_fixed, fixed, True) rcommon.overlayImages(fixed_to_moving, moving, True) direct_residual, stats = tf.compose_vector_fields(displacement, direct_inverse) direct_residual = np.array(direct_residual) rcommon.plotDiffeomorphism(displacement, direct_inverse, direct_residual, 'inv-direct', 7)
def testEstimateMonomodalDiffeomorphicField2DMultiScale(lambdaParam): fname0 = 'IBSR_01_to_02.nii.gz' fname1 = 'data/t1/IBSR18/IBSR_02/IBSR_02_ana_strip.nii.gz' nib_moving = nib.load(fname0) nib_fixed = nib.load(fname1) moving = nib_moving.get_data().squeeze().astype(np.float64) fixed = nib_fixed.get_data().squeeze().astype(np.float64) moving = np.copy(moving, order='C') fixed = np.copy(fixed, order='C') sl = moving.shape sr = fixed.shape level = 5 #---sagital--- moving = moving[sl[0] // 2, :, :].copy() fixed = fixed[sr[0] // 2, :, :].copy() #---coronal--- #moving=moving[:,sl[1]//2,:].copy() #fixed=fixed[:,sr[1]//2,:].copy() #---axial--- #moving=moving[:,:,sl[2]//2].copy() #fixed=fixed[:,:,sr[2]//2].copy() maskMoving = moving > 0 maskFixed = fixed > 0 movingPyramid = [ img for img in rcommon.pyramid_gaussian_2D(moving, level, maskMoving) ] fixedPyramid = [ img for img in rcommon.pyramid_gaussian_2D(fixed, level, maskFixed) ] rcommon.plotOverlaidPyramids(movingPyramid, fixedPyramid) displacementList = [] maxIter = 200 displacement, inverse = estimateMonomodalDiffeomorphicField2DMultiScale( movingPyramid, fixedPyramid, lambdaParam, maxIter, 0, displacementList) residual = tf.compose_vector_fields(displacement, inverse) warpPyramid = [ rcommon.warpImage(movingPyramid[i], displacementList[i]) for i in range(level + 1) ] rcommon.plotOverlaidPyramids(warpPyramid, fixedPyramid) rcommon.overlayImages(warpPyramid[0], fixedPyramid[0]) rcommon.plotDiffeomorphism(displacement, inverse, residual)
def testEstimateMonomodalSyNField2DMultiScale(lambdaParam): fname0='IBSR_01_to_02.nii.gz' fname1='data/t1/IBSR18/IBSR_02/IBSR_02_ana_strip.nii.gz' nib_moving = nib.load(fname0) nib_fixed= nib.load(fname1) moving=nib_moving.get_data().squeeze() fixed=nib_fixed.get_data().squeeze() moving=np.copy(moving, order='C') fixed=np.copy(fixed, order='C') sl=moving.shape sr=fixed.shape level=5 #---sagital--- moving=moving[sl[0]//2,:,:].copy() fixed=fixed[sr[0]//2,:,:].copy() #---coronal--- #moving=moving[:,sl[1]//2,:].copy() #fixed=fixed[:,sr[1]//2,:].copy() #---axial--- #moving=moving[:,:,sl[2]//2].copy() #fixed=fixed[:,:,sr[2]//2].copy() maskMoving=moving>0 maskFixed=fixed>0 movingPyramid=[img for img in rcommon.pyramid_gaussian_2D(moving, level, maskMoving)] fixedPyramid=[img for img in rcommon.pyramid_gaussian_2D(fixed, level, maskFixed)] rcommon.plotOverlaidPyramids(movingPyramid, fixedPyramid) displacementList=[] maxIter=200 displacement=estimateMonomodalSyNField2DMultiScale(movingPyramid, fixedPyramid, lambdaParam, maxIter, 0,displacementList) warpPyramid=[rcommon.warpImage(movingPyramid[i], displacementList[i]) for i in range(level+1)] rcommon.plotOverlaidPyramids(warpPyramid, fixedPyramid) rcommon.overlayImages(warpPyramid[0], fixedPyramid[0]) rcommon.plotDeformationField(displacement) nrm=np.sqrt(displacement[...,0]**2 + displacement[...,1]**2) maxNorm=np.max(nrm) displacement[...,0]*=(maskMoving + maskFixed) displacement[...,1]*=(maskMoving + maskFixed) rcommon.plotDeformationField(displacement) #nrm=np.sqrt(displacement[...,0]**2 + displacement[...,1]**2) #plt.figure() #plt.imshow(nrm) print 'Max global displacement: ', maxNorm
def test_optimizer_monomodal_2d(): r''' Classical Circle-To-C experiment for 2D Monomodal registration ''' fname_moving = 'data/circle.png' fname_fixed = 'data/C.png' moving = plt.imread(fname_moving) fixed = plt.imread(fname_fixed) moving = moving[:, :, 0].astype(np.float64) fixed = fixed[:, :, 0].astype(np.float64) moving = np.copy(moving, order = 'C') fixed = np.copy(fixed, order = 'C') moving = (moving-moving.min())/(moving.max() - moving.min()) fixed = (fixed-fixed.min())/(fixed.max() - fixed.min()) ################Configure and run the Optimizer##################### max_iter = [i for i in [20, 100, 100, 100]] similarity_metric = SSDMetric(2, {'symmetric':True, 'lambda':5.0, 'stepType':SSDMetric.GAUSS_SEIDEL_STEP}) optimizer_parameters = { 'max_iter':max_iter, 'inversion_iter':40, 'inversion_tolerance':1e-3, 'report_status':True} update_rule = UpdateRule.Composition() registration_optimizer = SymmetricRegistrationOptimizer(fixed, moving, None, None, similarity_metric, update_rule, optimizer_parameters) registration_optimizer.optimize() #######################show results################################# displacement = registration_optimizer.get_forward() direct_inverse = registration_optimizer.get_backward() moving_to_fixed = np.array(tf.warp_image(moving, displacement)) fixed_to_moving = np.array(tf.warp_image(fixed, direct_inverse)) rcommon.overlayImages(moving_to_fixed, fixed, True) rcommon.overlayImages(fixed_to_moving, moving, True) direct_residual, stats = tf.compose_vector_fields(displacement, direct_inverse) direct_residual = np.array(direct_residual) rcommon.plotDiffeomorphism(displacement, direct_inverse, direct_residual, 'inv-direct', 7)
def testIntersubjectRigidRegistration(fname0, fname1, level, outfname): nib_left = nib.load(fname0) nib_right = nib.load(fname1) left=nib_left.get_data().astype(np.double).squeeze() right=nib_right.get_data().astype(np.double).squeeze() leftPyramid=[i for i in rcommon.pyramid_gaussian_3D(left, level)] rightPyramid=[i for i in rcommon.pyramid_gaussian_3D(right, level)] plotSlicePyramidsAxial(leftPyramid, rightPyramid) print 'Estimation started.' beta=estimateRigidTransformationMultiscale3D(leftPyramid, rightPyramid) print 'Estimation finished.' rcommon.applyRigidTransformation3D(left, beta) sl=np.array(left.shape)//2 sr=np.array(right.shape)//2 rcommon.overlayImages(left[sl[0],:,:], leftPyramid[0][sr[0],:,:]) rcommon.overlayImages(left[sl[0],:,:], right[sr[0],:,:]) affine_transform=AffineTransform('ijk', ['aligned-z=I->S','aligned-y=P->A', 'aligned-x=L->R'], np.eye(4)) left=Image(left, affine_transform) nipy.save_image(left,outfname) return beta
def test_optimizer_monomodal_2d(): r""" Classical Circle-To-C experiment for 2D Monomodal registration """ fname_moving = "data/circle.png" fname_fixed = "data/C.png" nib_moving = plt.imread(fname_moving) nib_fixed = plt.imread(fname_fixed) moving = nib_moving[:, :, 0].astype(np.float64) fixed = nib_fixed[:, :, 1].astype(np.float64) moving = np.copy(moving, order="C") fixed = np.copy(fixed, order="C") moving = (moving - moving.min()) / (moving.max() - moving.min()) fixed = (fixed - fixed.min()) / (fixed.max() - fixed.min()) ################Configure and run the Optimizer##################### max_iter = [i for i in [25, 100, 100, 100]] similarity_metric = SSDMetric({"lambda": 5.0, "max_inner_iter": 50, "step_type": SSDMetric.GAUSS_SEIDEL_STEP}) update_rule = UpdateRule.Composition() optimizer_parameters = { "max_iter": max_iter, "inversion_iter": 40, "inversion_tolerance": 1e-3, "report_status": True, } registration_optimizer = AsymmetricRegistrationOptimizer( fixed, moving, None, None, similarity_metric, update_rule, optimizer_parameters ) registration_optimizer.optimize() #######################show results################################# displacement = registration_optimizer.get_forward() direct_inverse = registration_optimizer.get_backward() moving_to_fixed = np.array(tf.warp_image(moving, displacement)) fixed_to_moving = np.array(tf.warp_image(fixed, direct_inverse)) rcommon.overlayImages(moving_to_fixed, fixed, True) rcommon.overlayImages(fixed_to_moving, moving, True) direct_residual, stats = tf.compose_vector_fields(displacement, direct_inverse) direct_residual = np.array(direct_residual) rcommon.plotDiffeomorphism(displacement, direct_inverse, direct_residual, "inv-direct", 7)
def testIntersubjectRigidRegistration(fname0, fname1, level, outfname): nib_left = nib.load(fname0) nib_right = nib.load(fname1) left = nib_left.get_data().astype(np.double).squeeze() right = nib_right.get_data().astype(np.double).squeeze() leftPyramid = [i for i in rcommon.pyramid_gaussian_3D(left, level)] rightPyramid = [i for i in rcommon.pyramid_gaussian_3D(right, level)] plotSlicePyramidsAxial(leftPyramid, rightPyramid) print 'Estimation started.' beta = estimateRigidTransformationMultiscale3D(leftPyramid, rightPyramid) print 'Estimation finished.' rcommon.applyRigidTransformation3D(left, beta) sl = np.array(left.shape) // 2 sr = np.array(right.shape) // 2 rcommon.overlayImages(left[sl[0], :, :], leftPyramid[0][sr[0], :, :]) rcommon.overlayImages(left[sl[0], :, :], right[sr[0], :, :]) affine_transform = AffineTransform( 'ijk', ['aligned-z=I->S', 'aligned-y=P->A', 'aligned-x=L->R'], np.eye(4)) left = Image(left, affine_transform) nipy.save_image(left, outfname) return beta
def report_status(self): r''' Shows the overlaid input images ''' if self.dim == 2: plt.figure() rcommon.overlayImages(self.movingq_means_field, self.fixedq_means_field, False) else: fixed = self.fixed_image moving = self.moving_image shape_fixed = fixed.shape rcommon.overlayImages(moving[:, shape_fixed[1]//2, :], fixed[:, shape_fixed[1]//2, :]) rcommon.overlayImages(moving[shape_fixed[0]//2, :, :], fixed[shape_fixed[0]//2, :, :]) rcommon.overlayImages(moving[:, :, shape_fixed[2]//2], fixed[:, :, shape_fixed[2]//2])
def report_status(self): r''' Shows the overlaid input images ''' if self.dim == 2: plt.figure() rcommon.overlayImages(self.movingq_means_field, self.fixedq_means_field, False) else: fixed = self.fixed_image moving = self.moving_image shape_fixed = fixed.shape rcommon.overlayImages(moving[:, shape_fixed[1] // 2, :], fixed[:, shape_fixed[1] // 2, :]) rcommon.overlayImages(moving[shape_fixed[0] // 2, :, :], fixed[shape_fixed[0] // 2, :, :]) rcommon.overlayImages(moving[:, :, shape_fixed[2] // 2], fixed[:, :, shape_fixed[2] // 2])
def estimateNewMonomodalSyNField2D(moving, fixed, fWarp, fInv, mWarp, mInv, lambdaParam, maxOuterIter): ''' Warning: in the monomodal case, the parameter lambda must be significantly lower than in the multimodal case. Try lambdaParam=1, as opposed as lambdaParam=150 used in the multimodal case ''' innerTolerance = 1e-4 outerTolerance = 1e-3 if (mWarp != None): totalM = mWarp totalMInv = mInv else: totalM = np.zeros(shape=(fixed.shape) + (2, ), dtype=np.float64) totalMInv = np.zeros(shape=(fixed.shape) + (2, ), dtype=np.float64) if (fWarp != None): totalF = fWarp totalFInv = fInv else: totalF = np.zeros(shape=(moving.shape) + (2, ), dtype=np.float64) totalFInv = np.zeros(shape=(moving.shape) + (2, ), dtype=np.float64) outerIter = 0 framesToCapture = 5 maxOuterIter = framesToCapture * ( (maxOuterIter + framesToCapture - 1) / framesToCapture) itersPerCapture = maxOuterIter / framesToCapture plt.figure() while (outerIter < maxOuterIter): outerIter += 1 print 'Outer iter:', outerIter wmoving = np.array(tf.warp_image(moving, totalMInv)) wfixed = np.array(tf.warp_image(fixed, totalFInv)) if ((outerIter == 1) or (outerIter % itersPerCapture == 0)): plt.subplot(1, framesToCapture + 1, 1 + outerIter / itersPerCapture) rcommon.overlayImages(wmoving, wfixed, False) plt.title('Iter:' + str(outerIter - 1)) #Compute forward update sigmaField = np.ones_like(wmoving, dtype=np.float64) deltaField = wfixed - wmoving movingGradient = np.empty(shape=(wmoving.shape) + (2, ), dtype=np.float64) movingGradient[:, :, 0], movingGradient[:, :, 1] = sp.gradient(wmoving) maxVariation = 1 + innerTolerance innerIter = 0 fw = np.zeros(shape=(fixed.shape) + (2, ), dtype=np.float64) maxInnerIter = 1000 while ((maxVariation > innerTolerance) and (innerIter < maxInnerIter)): innerIter += 1 maxVariation = tf.iterateDisplacementField2DCYTHON( deltaField, sigmaField, movingGradient, lambdaParam, fw, None) #fw*=0.5 totalF, stats = tf.compose_vector_fields(fw, totalF) totalF = np.array(totalF) meanDispF = np.mean(np.abs(fw)) #Compute backward field sigmaField = np.ones_like(wfixed, dtype=np.float64) deltaField = wmoving - wfixed fixedGradient = np.empty(shape=(wfixed.shape) + (2, ), dtype=np.float64) fixedGradient[:, :, 0], fixedGradient[:, :, 1] = sp.gradient(wfixed) maxVariation = 1 + innerTolerance innerIter = 0 mw = np.zeros(shape=(fixed.shape) + (2, ), dtype=np.float64) maxInnerIter = 1000 while ((maxVariation > innerTolerance) and (innerIter < maxInnerIter)): innerIter += 1 maxVariation = tf.iterateDisplacementField2DCYTHON( deltaField, sigmaField, fixedGradient, lambdaParam, mw, None) #mw*=0.5 totalM, stats = tf.compose_vector_fields(mw, totalM) totalM = np.array(totalM) meanDispM = np.mean(np.abs(mw)) totalFInv = np.array( tf.invert_vector_field_fixed_point(totalF, None, 20, 1e-3, None)) totalMInv = np.array( tf.invert_vector_field_fixed_point(totalM, None, 20, 1e-3, None)) totalF = np.array( tf.invert_vector_field_fixed_point(totalFInv, None, 20, 1e-3, None)) totalM = np.array( tf.invert_vector_field_fixed_point(totalMInv, None, 20, 1e-3, None)) # totalFInv=np.array(tf.invert_vector_field(totalF, 0.75, 100, 1e-6)) # totalMInv=np.array(tf.invert_vector_field(totalM, 0.75, 100, 1e-6)) # totalF=np.array(tf.invert_vector_field(totalFInv, 0.75, 100, 1e-6)) # totalM=np.array(tf.invert_vector_field(totalMInv, 0.75, 100, 1e-6)) if (meanDispM + meanDispF < 2 * outerTolerance): break print "Iter: ", innerIter, "Mean lateral displacement:", 0.5 * ( meanDispM + meanDispF), "Max variation:", maxVariation return totalF, totalFInv, totalM, totalMInv
def test_optimizer_multimodal_2d(lambda_param): r''' Registers one of the mid-slices (axial, coronal or sagital) of each input volume (the volumes are expected to be from diferent modalities and should already be affine-registered, for example Brainweb t1 vs t2) ''' fname_moving = 'data/t2/IBSR_t2template_to_01.nii.gz' fname_fixed = 'data/t1/IBSR_template_to_01.nii.gz' # fnameMoving = 'data/circle.png' # fnameFixed = 'data/C.png' nifti = True if nifti: nib_moving = nib.load(fname_moving) nib_fixed = nib.load(fname_fixed) moving = nib_moving.get_data().squeeze().astype(np.float64) fixed = nib_fixed.get_data().squeeze().astype(np.float64) moving = np.copy(moving, order = 'C') fixed = np.copy(fixed, order = 'C') shape_moving = moving.shape shape_fixed = fixed.shape moving = moving[:, shape_moving[1]//2, :].copy() fixed = fixed[:, shape_fixed[1]//2, :].copy() moving = (moving-moving.min())/(moving.max()-moving.min()) fixed = (fixed-fixed.min())/(fixed.max()-fixed.min()) else: nib_moving = plt.imread(fname_moving) nib_fixed = plt.imread(fname_fixed) moving = nib_moving[:, :, 0].astype(np.float64) fixed = nib_fixed[:, :, 1].astype(np.float64) moving = np.copy(moving, order = 'C') fixed = np.copy(fixed, order = 'C') moving = (moving-moving.min())/(moving.max() - moving.min()) fixed = (fixed-fixed.min())/(fixed.max() - fixed.min()) max_iter = [i for i in [25, 50, 100]] similarity_metric = EMMetric(2, {'symmetric':True, 'lambda':lambda_param, 'stepType':SSDMetric.GAUSS_SEIDEL_STEP, 'q_levels':256, 'max_inner_iter':20, 'use_double_gradient':True, 'max_step_length':0.25}) optimizer_parameters = { 'max_iter':max_iter, 'inversion_iter':20, 'inversion_tolerance':1e-3, 'report_status':True} update_rule = UpdateRule.Composition() print('Generating synthetic field...') #----apply synthetic deformation field to fixed image ground_truth = rcommon.createDeformationField2D_type2(fixed.shape[0], fixed.shape[1], 8) warped_fixed = rcommon.warpImage(fixed, ground_truth) print('Registering T2 (template) to deformed T1 (template)...') plt.figure() rcommon.overlayImages(warped_fixed, moving, False) registration_optimizer = SymmetricRegistrationOptimizer(warped_fixed, moving, None, None, similarity_metric, update_rule, optimizer_parameters) registration_optimizer.optimize() #######################show results################################# displacement = registration_optimizer.get_forward() direct_inverse = registration_optimizer.get_backward() moving_to_fixed = np.array(tf.warp_image(moving, displacement)) fixed_to_moving = np.array(tf.warp_image(warped_fixed, direct_inverse)) rcommon.overlayImages(moving_to_fixed, fixed_to_moving, True) direct_residual, stats = tf.compose_vector_fields(displacement, direct_inverse) direct_residual = np.array(direct_residual) rcommon.plotDiffeomorphism(displacement, direct_inverse, direct_residual, 'inv-direct', 7) residual = ((displacement-ground_truth))**2 mean_displacement_error = np.sqrt(residual.sum(2)*(warped_fixed>0)).mean() stdev_displacement_error = np.sqrt(residual.sum(2)*(warped_fixed>0)).std() print('Mean displacement error: %0.6f (%0.6f)'% (mean_displacement_error, stdev_displacement_error))
def runArcesExperiment(rootDir, lambdaParam, maxOuterIter): #---Load displacement field--- dxName=rootDir+'Vx.dat' dyName=rootDir+'Vy.dat' dx=np.loadtxt(dxName) dy=np.loadtxt(dyName) GT_in=np.ndarray(shape=dx.shape+(2,), dtype=np.float64) GT_in[...,0]=dy GT_in[...,1]=dx GT, GTinv=tf.vector_field_exponential(GT_in) GTres=tf.compose_vector_fields(GT, GTinv) #---Load input images--- fnameT1=rootDir+'t1.jpg' fnameT2=rootDir+'t2.jpg' fnamePD=rootDir+'pd.jpg' fnameMask=rootDir+'Mascara.bmp' t1=plt.imread(fnameT1)[...,0].astype(np.float64) t2=plt.imread(fnameT2)[...,0].astype(np.float64) pd=plt.imread(fnamePD)[...,0].astype(np.float64) t1=(t1-t1.min())/(t1.max()-t1.min()) t2=(t2-t2.min())/(t2.max()-t2.min()) pd=(pd-pd.min())/(pd.max()-pd.min()) mask=plt.imread(fnameMask).astype(np.float64) fixed=t1 moving=t2 maskMoving=mask>0 maskFixed=mask>0 fixed*=mask moving*=mask plt.figure() plt.subplot(1,4,1) plt.imshow(t1, cmap=plt.cm.gray) plt.title('Input T1') plt.subplot(1,4,2) plt.imshow(t2, cmap=plt.cm.gray) plt.title('Input T2') plt.subplot(1,4,3) plt.imshow(pd, cmap=plt.cm.gray) plt.title('Input PD') plt.subplot(1,4,4) plt.imshow(mask, cmap=plt.cm.gray) plt.title('Input Mask') #------------------------- warpedFixed=rcommon.warpImage(fixed,GT) print 'Registering T2 (template) to deformed T1 (template)...' level=3 movingPyramid=[img for img in rcommon.pyramid_gaussian_2D(moving, level, maskMoving)] fixedPyramid=[img for img in rcommon.pyramid_gaussian_2D(warpedFixed, level, maskFixed)] plt.figure() plt.subplot(1,2,1) plt.imshow(moving, cmap=plt.cm.gray) plt.title('Moving') plt.subplot(1,2,2) plt.imshow(warpedFixed, cmap=plt.cm.gray) plt.title('Fixed') rcommon.plotOverlaidPyramids(movingPyramid, fixedPyramid) displacementList=[] displacement, inverse=estimateMultimodalDiffeomorphicField2DMultiScale(movingPyramid, fixedPyramid, lambdaParam, maxOuterIter, 0, displacementList) residual=tf.compose_vector_fields(displacement, inverse) warpPyramid=[rcommon.warpImage(movingPyramid[i], displacementList[i]) for i in range(level+1)] rcommon.plotOverlaidPyramids(warpPyramid, fixedPyramid) rcommon.overlayImages(warpPyramid[0], fixedPyramid[0]) displacement[...,0]*=(maskFixed) displacement[...,1]*=(maskFixed) #----plot deformations--- rcommon.plotDiffeomorphism(GT, GTinv, GTres, 7) rcommon.plotDiffeomorphism(displacement, inverse, residual, 7) #----statistics--- nrm=np.sqrt(displacement[...,0]**2 + displacement[...,1]**2) nrm*=maskFixed maxNorm=np.max(nrm) residual=((displacement-GT))**2 meanDisplacementError=np.sqrt(residual.sum(2)*(maskFixed)).mean() stdevDisplacementError=np.sqrt(residual.sum(2)*(maskFixed)).std() print 'Max global displacement: ', maxNorm print 'Mean displacement error: ', meanDisplacementError,'(',stdevDisplacementError,')'
def testEstimateECQMMFMultimodalDeformationField2DMultiScale_synthetic(): ##################parameters############ maxGTDisplacement = 2 maxPyramidLevel = 0 lambdaMeasureField = 0.02 lambdaDisplacement = 200 mu = 0.001 maxOuterIter = 20 maxInnerIter = 50 tolerance = 1e-5 displacementList = [] #######################################3 #fname0='IBSR_01_to_02.nii.gz' #fname1='data/t1/IBSR18/IBSR_02/IBSR_02_ana_strip.nii.gz' fnameMoving = 'data/t2/t2_icbm_normal_1mm_pn0_rf0_peeled.nii.gz' fnameFixed = 'data/t1/t1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz' nib_moving = nib.load(fnameMoving) nib_fixed = nib.load(fnameFixed) moving = nib_moving.get_data().squeeze().astype(np.float64) fixed = nib_fixed.get_data().squeeze().astype(np.float64) sm = moving.shape sf = fixed.shape #---coronal--- moving = moving[:, sm[1] // 2, :].copy() fixed = fixed[:, sf[1] // 2, :].copy() moving = (moving - moving.min()) / (moving.max() - moving.min()) fixed = (fixed - fixed.min()) / (fixed.max() - fixed.min()) #----apply synthetic deformation field to fixed image GT = rcommon.createDeformationField_type2(fixed.shape[0], fixed.shape[1], maxGTDisplacement) fixed = rcommon.warpImage(fixed, GT) maskMoving = moving > 0 maskFixed = fixed > 0 movingPyramid = [ img for img in rcommon.pyramid_gaussian_2D(moving, maxPyramidLevel, maskMoving) ] fixedPyramid = [ img for img in rcommon.pyramid_gaussian_2D(fixed, maxPyramidLevel, maskFixed) ] plt.figure() plt.subplot(1, 2, 1) plt.imshow(moving, cmap=plt.cm.gray) plt.title('Moving') plt.subplot(1, 2, 2) plt.imshow(fixed, cmap=plt.cm.gray) plt.title('Fixed') rcommon.plotOverlaidPyramids(movingPyramid, fixedPyramid) displacement = estimateECQMMFMultimodalDeformationField2DMultiScale( fixedPyramid, movingPyramid, lambdaMeasureField, lambdaDisplacement, mu, maxOuterIter, maxInnerIter, tolerance, 0, displacementList) warpedPyramid = [ rcommon.warpImage(movingPyramid[i], displacementList[i]) for i in range(maxPyramidLevel + 1) ] rcommon.plotOverlaidPyramids(warpedPyramid, fixedPyramid) rcommon.overlayImages(warpedPyramid[0], fixedPyramid[0]) rcommon.plotDeformationField(displacement) displacement[..., 0] *= (maskMoving + maskFixed) displacement[..., 1] *= (maskMoving + maskFixed) nrm = np.sqrt(displacement[..., 0]**2 + displacement[..., 1]**2) maxNorm = np.max(nrm) rcommon.plotDeformationField(displacement) residual = ((displacement - GT))**2 meanDisplacementError = np.sqrt( residual.sum(2) * (maskMoving + maskFixed)).mean() stdevDisplacementError = np.sqrt( residual.sum(2) * (maskMoving + maskFixed)).std() print 'Max global displacement: ', maxNorm print 'Mean displacement error: ', meanDisplacementError, '(', stdevDisplacementError, ')'
def estimateNewMonomodalSyNField2D(moving, fixed, fWarp, fInv, mWarp, mInv, lambdaParam, maxOuterIter): ''' Warning: in the monomodal case, the parameter lambda must be significantly lower than in the multimodal case. Try lambdaParam=1, as opposed as lambdaParam=150 used in the multimodal case ''' innerTolerance=1e-4 outerTolerance=1e-3 if(mWarp!=None): totalM=mWarp totalMInv=mInv else: totalM=np.zeros(shape=(fixed.shape)+(2,), dtype=np.float64) totalMInv=np.zeros(shape=(fixed.shape)+(2,), dtype=np.float64) if(fWarp!=None): totalF=fWarp totalFInv=fInv else: totalF=np.zeros(shape=(moving.shape)+(2,), dtype=np.float64) totalFInv=np.zeros(shape=(moving.shape)+(2,), dtype=np.float64) outerIter=0 framesToCapture=5 maxOuterIter=framesToCapture*((maxOuterIter+framesToCapture-1)/framesToCapture) itersPerCapture=maxOuterIter/framesToCapture plt.figure() while(outerIter<maxOuterIter): outerIter+=1 print 'Outer iter:', outerIter wmoving=np.array(tf.warp_image(moving, totalMInv)) wfixed=np.array(tf.warp_image(fixed, totalFInv)) if((outerIter==1) or (outerIter%itersPerCapture==0)): plt.subplot(1,framesToCapture+1, 1+outerIter/itersPerCapture) rcommon.overlayImages(wmoving, wfixed, False) plt.title('Iter:'+str(outerIter-1)) #Compute forward update sigmaField=np.ones_like(wmoving, dtype=np.float64) deltaField=wfixed-wmoving movingGradient =np.empty(shape=(wmoving.shape)+(2,), dtype=np.float64) movingGradient[:,:,0], movingGradient[:,:,1]=sp.gradient(wmoving) maxVariation=1+innerTolerance innerIter=0 fw =np.zeros(shape=(fixed.shape)+(2,), dtype=np.float64) maxInnerIter=1000 while((maxVariation>innerTolerance)and(innerIter<maxInnerIter)): innerIter+=1 maxVariation=tf.iterateDisplacementField2DCYTHON(deltaField, sigmaField, movingGradient, lambdaParam, fw, None) #fw*=0.5 totalF, stats=tf.compose_vector_fields(fw, totalF) totalF=np.array(totalF); meanDispF=np.mean(np.abs(fw)) #Compute backward field sigmaField=np.ones_like(wfixed, dtype=np.float64) deltaField=wmoving-wfixed fixedGradient =np.empty(shape=(wfixed.shape)+(2,), dtype=np.float64) fixedGradient[:,:,0], fixedGradient[:,:,1]=sp.gradient(wfixed) maxVariation=1+innerTolerance innerIter=0 mw =np.zeros(shape=(fixed.shape)+(2,), dtype=np.float64) maxInnerIter=1000 while((maxVariation>innerTolerance)and(innerIter<maxInnerIter)): innerIter+=1 maxVariation=tf.iterateDisplacementField2DCYTHON(deltaField, sigmaField, fixedGradient, lambdaParam, mw, None) #mw*=0.5 totalM, stats=tf.compose_vector_fields(mw, totalM) totalM=np.array(totalM); meanDispM=np.mean(np.abs(mw)) totalFInv=np.array(tf.invert_vector_field_fixed_point(totalF, None, 20, 1e-3, None)) totalMInv=np.array(tf.invert_vector_field_fixed_point(totalM, None, 20, 1e-3, None)) totalF=np.array(tf.invert_vector_field_fixed_point(totalFInv, None, 20, 1e-3, None)) totalM=np.array(tf.invert_vector_field_fixed_point(totalMInv, None, 20, 1e-3, None)) # totalFInv=np.array(tf.invert_vector_field(totalF, 0.75, 100, 1e-6)) # totalMInv=np.array(tf.invert_vector_field(totalM, 0.75, 100, 1e-6)) # totalF=np.array(tf.invert_vector_field(totalFInv, 0.75, 100, 1e-6)) # totalM=np.array(tf.invert_vector_field(totalMInv, 0.75, 100, 1e-6)) if(meanDispM+meanDispF<2*outerTolerance): break print "Iter: ",innerIter, "Mean lateral displacement:", 0.5*(meanDispM+meanDispF), "Max variation:",maxVariation return totalF, totalFInv, totalM, totalMInv
def report_status(self): plt.figure() rcommon.overlayImages(self.moving_image, self.fixed_image, False)
def test_optimizer_multimodal_2d(lambda_param): r''' Registers one of the mid-slices (axial, coronal or sagital) of each input volume (the volumes are expected to be from diferent modalities and should already be affine-registered, for example Brainweb t1 vs t2) ''' fname_moving = 'data/t2/IBSR_t2template_to_01.nii.gz' fname_fixed = 'data/t1/IBSR_template_to_01.nii.gz' # fnameMoving = 'data/circle.png' # fnameFixed = 'data/C.png' nifti = True if nifti: nib_moving = nib.load(fname_moving) nib_fixed = nib.load(fname_fixed) moving = nib_moving.get_data().squeeze().astype(np.float64) fixed = nib_fixed.get_data().squeeze().astype(np.float64) moving = np.copy(moving, order='C') fixed = np.copy(fixed, order='C') shape_moving = moving.shape shape_fixed = fixed.shape moving = moving[:, shape_moving[1] // 2, :].copy() fixed = fixed[:, shape_fixed[1] // 2, :].copy() moving = (moving - moving.min()) / (moving.max() - moving.min()) fixed = (fixed - fixed.min()) / (fixed.max() - fixed.min()) else: nib_moving = plt.imread(fname_moving) nib_fixed = plt.imread(fname_fixed) moving = nib_moving[:, :, 0].astype(np.float64) fixed = nib_fixed[:, :, 1].astype(np.float64) moving = np.copy(moving, order='C') fixed = np.copy(fixed, order='C') moving = (moving - moving.min()) / (moving.max() - moving.min()) fixed = (fixed - fixed.min()) / (fixed.max() - fixed.min()) max_iter = [i for i in [25, 50, 100]] similarity_metric = EMMetric( 2, { 'symmetric': True, 'lambda': lambda_param, 'stepType': SSDMetric.GAUSS_SEIDEL_STEP, 'q_levels': 256, 'max_inner_iter': 20, 'use_double_gradient': True, 'max_step_length': 0.25 }) optimizer_parameters = { 'max_iter': max_iter, 'inversion_iter': 20, 'inversion_tolerance': 1e-3, 'report_status': True } update_rule = UpdateRule.Composition() print('Generating synthetic field...') #----apply synthetic deformation field to fixed image ground_truth = rcommon.createDeformationField2D_type2( fixed.shape[0], fixed.shape[1], 8) warped_fixed = rcommon.warpImage(fixed, ground_truth) print('Registering T2 (template) to deformed T1 (template)...') plt.figure() rcommon.overlayImages(warped_fixed, moving, False) registration_optimizer = SymmetricRegistrationOptimizer( warped_fixed, moving, None, None, similarity_metric, update_rule, optimizer_parameters) registration_optimizer.optimize() #######################show results################################# displacement = registration_optimizer.get_forward() direct_inverse = registration_optimizer.get_backward() moving_to_fixed = np.array(tf.warp_image(moving, displacement)) fixed_to_moving = np.array(tf.warp_image(warped_fixed, direct_inverse)) rcommon.overlayImages(moving_to_fixed, fixed_to_moving, True) direct_residual, stats = tf.compose_vector_fields(displacement, direct_inverse) direct_residual = np.array(direct_residual) rcommon.plotDiffeomorphism(displacement, direct_inverse, direct_residual, 'inv-direct', 7) residual = ((displacement - ground_truth))**2 mean_displacement_error = np.sqrt(residual.sum(2) * (warped_fixed > 0)).mean() stdev_displacement_error = np.sqrt(residual.sum(2) * (warped_fixed > 0)).std() print('Mean displacement error: %0.6f (%0.6f)' % (mean_displacement_error, stdev_displacement_error))
def runArcesExperiment(rootDir, lambdaParam, maxOuterIter): #---Load displacement field--- dxName = rootDir + 'Vx.dat' dyName = rootDir + 'Vy.dat' dx = np.loadtxt(dxName) dy = np.loadtxt(dyName) GT_in = np.ndarray(shape=dx.shape + (2, ), dtype=np.float64) GT_in[..., 0] = dy GT_in[..., 1] = dx GT, GTinv = tf.vector_field_exponential(GT_in) GTres = tf.compose_vector_fields(GT, GTinv) #---Load input images--- fnameT1 = rootDir + 't1.jpg' fnameT2 = rootDir + 't2.jpg' fnamePD = rootDir + 'pd.jpg' fnameMask = rootDir + 'Mascara.bmp' t1 = plt.imread(fnameT1)[..., 0].astype(np.float64) t2 = plt.imread(fnameT2)[..., 0].astype(np.float64) pd = plt.imread(fnamePD)[..., 0].astype(np.float64) t1 = (t1 - t1.min()) / (t1.max() - t1.min()) t2 = (t2 - t2.min()) / (t2.max() - t2.min()) pd = (pd - pd.min()) / (pd.max() - pd.min()) mask = plt.imread(fnameMask).astype(np.float64) fixed = t1 moving = t2 maskMoving = mask > 0 maskFixed = mask > 0 fixed *= mask moving *= mask plt.figure() plt.subplot(1, 4, 1) plt.imshow(t1, cmap=plt.cm.gray) plt.title('Input T1') plt.subplot(1, 4, 2) plt.imshow(t2, cmap=plt.cm.gray) plt.title('Input T2') plt.subplot(1, 4, 3) plt.imshow(pd, cmap=plt.cm.gray) plt.title('Input PD') plt.subplot(1, 4, 4) plt.imshow(mask, cmap=plt.cm.gray) plt.title('Input Mask') #------------------------- warpedFixed = rcommon.warpImage(fixed, GT) print 'Registering T2 (template) to deformed T1 (template)...' level = 3 movingPyramid = [ img for img in rcommon.pyramid_gaussian_2D(moving, level, maskMoving) ] fixedPyramid = [ img for img in rcommon.pyramid_gaussian_2D(warpedFixed, level, maskFixed) ] plt.figure() plt.subplot(1, 2, 1) plt.imshow(moving, cmap=plt.cm.gray) plt.title('Moving') plt.subplot(1, 2, 2) plt.imshow(warpedFixed, cmap=plt.cm.gray) plt.title('Fixed') rcommon.plotOverlaidPyramids(movingPyramid, fixedPyramid) displacementList = [] displacement, inverse = estimateMultimodalDiffeomorphicField2DMultiScale( movingPyramid, fixedPyramid, lambdaParam, maxOuterIter, 0, displacementList) residual = tf.compose_vector_fields(displacement, inverse) warpPyramid = [ rcommon.warpImage(movingPyramid[i], displacementList[i]) for i in range(level + 1) ] rcommon.plotOverlaidPyramids(warpPyramid, fixedPyramid) rcommon.overlayImages(warpPyramid[0], fixedPyramid[0]) displacement[..., 0] *= (maskFixed) displacement[..., 1] *= (maskFixed) #----plot deformations--- rcommon.plotDiffeomorphism(GT, GTinv, GTres, 7) rcommon.plotDiffeomorphism(displacement, inverse, residual, 7) #----statistics--- nrm = np.sqrt(displacement[..., 0]**2 + displacement[..., 1]**2) nrm *= maskFixed maxNorm = np.max(nrm) residual = ((displacement - GT))**2 meanDisplacementError = np.sqrt(residual.sum(2) * (maskFixed)).mean() stdevDisplacementError = np.sqrt(residual.sum(2) * (maskFixed)).std() print 'Max global displacement: ', maxNorm print 'Mean displacement error: ', meanDisplacementError, '(', stdevDisplacementError, ')'
def test_optimizer_multimodal_2d(lambda_param): r""" Registers one of the mid-slices (axial, coronal or sagital) of each input volume (the volumes are expected to be from diferent modalities and should already be affine-registered, for example Brainweb t1 vs t2) """ fname_moving = "data/t2/IBSR_t2template_to_01.nii.gz" fname_fixed = "data/t1/IBSR_template_to_01.nii.gz" # fname_moving = 'data/circle.png' # fname_fixed = 'data/C.png' nifti = True if nifti: nib_moving = nib.load(fname_moving) nib_fixed = nib.load(fname_fixed) moving = nib_moving.get_data().squeeze().astype(np.float64) fixed = nib_fixed.get_data().squeeze().astype(np.float64) moving = np.copy(moving, order="C") fixed = np.copy(fixed, order="C") moving_shape = moving.shape fixed_shape = fixed.shape moving = moving[:, moving_shape[1] // 2, :].copy() fixed = fixed[:, fixed_shape[1] // 2, :].copy() # moving = histeq(moving) # fixed = histeq(fixed) moving = (moving - moving.min()) / (moving.max() - moving.min()) fixed = (fixed - fixed.min()) / (fixed.max() - fixed.min()) else: nib_moving = plt.imread(fname_moving) nib_fixed = plt.imread(fname_fixed) moving = nib_moving[:, :, 0].astype(np.float64) fixed = nib_fixed[:, :, 1].astype(np.float64) moving = np.copy(moving, order="C") fixed = np.copy(fixed, order="C") moving = (moving - moving.min()) / (moving.max() - moving.min()) fixed = (fixed - fixed.min()) / (fixed.max() - fixed.min()) # max_iter = [i for i in [25,50,100,100]] max_iter = [i for i in [25, 50, 100]] similarity_metric = EMMetric( { "symmetric": True, "lambda": lambda_param, "step_type": SSDMetric.GAUSS_SEIDEL_STEP, "q_levels": 256, "max_inner_iter": 40, "use_double_gradient": True, "max_step_length": 0.25, } ) optimizer_parameters = { "max_iter": max_iter, "inversion_iter": 40, "inversion_tolerance": 1e-3, "report_status": True, } update_rule = UpdateRule.Composition() print "Generating synthetic field..." # ----apply synthetic deformation field to fixed image ground_truth = rcommon.createDeformationField2D_type2(fixed.shape[0], fixed.shape[1], 8) warped_fixed = rcommon.warpImage(fixed, ground_truth) print "Registering T2 (template) to deformed T1 (template)..." plt.figure() rcommon.overlayImages(warped_fixed, moving, False) registration_optimizer = AsymmetricRegistrationOptimizer( warped_fixed, moving, None, None, similarity_metric, update_rule, optimizer_parameters ) registration_optimizer.optimize() #######################show results################################# displacement = registration_optimizer.get_forward() direct_inverse = registration_optimizer.get_backward() moving_to_fixed = np.array(tf.warp_image(moving, displacement)) fixed_to_moving = np.array(tf.warp_image(warped_fixed, direct_inverse)) rcommon.overlayImages(moving_to_fixed, fixed_to_moving, True) direct_residual, stats = tf.compose_vector_fields(displacement, direct_inverse) direct_residual = np.array(direct_residual) rcommon.plotDiffeomorphism(displacement, direct_inverse, direct_residual, "inv-direct", 7) residual = ((displacement - ground_truth)) ** 2 mean_error = np.sqrt(residual.sum(2) * (warped_fixed > 0)).mean() stdev_error = np.sqrt(residual.sum(2) * (warped_fixed > 0)).std() print "Mean displacement error: ", mean_error, "(", stdev_error, ")"
def showRegistrationResultMidSlices(fnameMoving, fnameFixed, fnameAffine=None): ''' showRegistrationResultMidSlices('IBSR_01_ana_strip.nii.gz', 't1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz', 'IBSR_01_ana_strip_t1_icbm_normal_1mm_pn0_rf0_peeledAffine.txt') showRegistrationResultMidSlices('warpedDiff_IBSR_01_ana_strip_t1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz', 't1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz', None) showRegistrationResultMidSlices('warpedDiff_IBSR_01_ana_strip_IBSR_02_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_02/IBSR_02_ana_strip.nii.gz', None) showRegistrationResultMidSlices('warpedDiff_IBSR_01_segTRI_ana_IBSR_02_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_02/IBSR_02_segTRI_ana.nii.gz', None) ##Worst pair: showRegistrationResultMidSlices('warpedDiff_IBSR_16_segTRI_ana_IBSR_12_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_12/IBSR_12_segTRI_ana.nii.gz', None) showRegistrationResultMidSlices('/opt/registration/data/t1/IBSR18/IBSR_16/IBSR_16_segTRI_ana.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_12/IBSR_12_segTRI_ana.nii.gz', None) showRegistrationResultMidSlices('/opt/registration/data/t1/IBSR18/IBSR_16/IBSR_16_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_12/IBSR_12_ana_strip.nii.gz', None) showRegistrationResultMidSlices('warpedAffine_IBSR_16_segTRI_ana_IBSR_12_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_12/IBSR_12_segTRI_ana.nii.gz', None) showRegistrationResultMidSlices('warpedDiff_IBSR_16_ana_strip_IBSR_12_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_12/IBSR_12_ana_strip.nii.gz', None) showRegistrationResultMidSlices('warpedAffine_IBSR_16_ana_strip_IBSR_12_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_12/IBSR_12_ana_strip.nii.gz', None) showRegistrationResultMidSlices('/opt/registration/data/t1/IBSR18/IBSR_10/IBSR_10_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_16/IBSR_16_ana_strip.nii.gz', None) showRegistrationResultMidSlices('warpedAffine_IBSR_10_ana_strip_IBSR_16_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_16/IBSR_16_ana_strip.nii.gz', None) showRegistrationResultMidSlices('warpedAffine_IBSR_16_ana_strip_IBSR_10_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_10/IBSR_10_ana_strip.nii.gz', None) showRegistrationResultMidSlices('warpedDiff_IBSR_16_ana_strip_IBSR_10_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_10/IBSR_10_ana_strip.nii.gz', None) showRegistrationResultMidSlices('warpedDiff_IBSR_01_ana_strip_IBSR_08_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_08/IBSR_08_ana_strip.nii.gz', None) showRegistrationResultMidSlices('/opt/registration/data/t1/IBSR18/IBSR_01/IBSR_01_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_08/IBSR_08_ana_strip.nii.gz', None) showRegistrationResultMidSlices('warpedDiff_IBSR_13_ana_strip_IBSR_10_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_10/IBSR_10_ana_strip.nii.gz', None) showRegistrationResultMidSlices('warpedAffine_IBSR_13_ana_strip_IBSR_10_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_10/IBSR_10_ana_strip.nii.gz', None) showRegistrationResultMidSlices('/opt/registration/data/t1/IBSR18/IBSR_13/IBSR_13_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_10/IBSR_10_ana_strip.nii.gz', None) showRegistrationResultMidSlices('warpedDiff_IBSR_01_ana_strip_IBSR_02_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_10/IBSR_10_ana_strip.nii.gz', None) showRegistrationResultMidSlices('warpedAffine_IBSR_16_seg_ana_IBSR_10_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_10/IBSR_10_seg_ana.nii.gz', None) showRegistrationResultMidSlices('/opt/registration/data/t1/IBSR18/IBSR_16/IBSR_16_seg_ana.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_10/IBSR_10_seg_ana.nii.gz', None) showRegistrationResultMidSlices('/opt/registration/data/t1/IBSR18/IBSR_01/IBSR_01_segTRI_fill_ana.nii.gz', 'warpedAffine_IBSR_10_segTRI_fill_ana_IBSR_01_ana_strip.nii.gz', None) showRegistrationResultMidSlices('warpedDiff_IBSR_07_ana_strip_IBSR_17_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_17/IBSR_17_ana_strip.nii.gz', None) showRegistrationResultMidSlices('/opt/registration/data/t1/IBSR18/IBSR_07/IBSR_07_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_17/IBSR_17_ana_strip.nii.gz', None) showRegistrationResultMidSlices('warpedDiff_IBSR_06_ana_strip_IBSR_17_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_17/IBSR_17_ana_strip.nii.gz', None) showRegistrationResultMidSlices('warpedDiff_IBSR_07_ana_strip_IBSR_12_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_12/IBSR_12_ana_strip.nii.gz', None) showRegistrationResultMidSlices('warpedDiff_IBSR_15_ana_strip_IBSR_10_ana_strip.nii.gz', '/opt/registration/data/t1/IBSR18/IBSR_10/IBSR_10_ana_strip.nii.gz', None) showRegistrationResultMidSlices('warpedDiff_IBSR_01_ana_strip_t1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz', 't1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz', None) showRegistrationResultMidSlices('warpedDiff_IBSR_01_segTRI_fill_ana_t1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz', 'data/phantom_1.0mm_normal_crisp.rawb.nii.gz', None) showRegistrationResultMidSlices('data/t1/t1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz', 'data/phantom_1.0mm_normal_crisp_peeled.nii.gz', None) showRegistrationResultMidSlices('data/t2/t2_icbm_normal_1mm_pn0_rf0_peeled.nii.gz', 'data/phantom_1.0mm_normal_crisp_peeled.nii.gz', None) showRegistrationResultMidSlices('warpedDiff_IBSR_16_ana_strip_t1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz', 'data/t1/t1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz', None) showRegistrationResultMidSlices('warpedAffine_IBSR_16_ana_strip_t1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz', 'data/t1/t1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz', None) showRegistrationResultMidSlices('test16.nii.gz', 'data/t1/t1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz', None) showRegistrationResultMidSlices('data/t1/t1_icbm_normal_1mm_pn0_rf0.rawb_peeled.nii.gz', 'data/t1/t1_icbm_normal_1mm_pn0_rf0.rawb_peeled.nii.gz', None) showRegistrationResultMidSlices('warpedAffine_IBSR_15_ana_strip_t1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz', 'data/t1/t1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz', None) showRegistrationResultMidSlices('warpedDiff_IBSR_15_ana_strip_t1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz', 'data/t1/t1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz', None) showRegistrationResultMidSlices('warpedAffine_IBSR_01_ana_strip_t1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz', 'data/t1/t1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz', None) showRegistrationResultMidSlices('warpedDiff_IBSR_01_ana_strip_t1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz', 'data/t1/t1_icbm_normal_1mm_pn0_rf0_peeled.nii.gz', None) ''' if(fnameAffine==None): T=np.eye(4) else: T=rcommon.readAntsAffine(fnameAffine) print 'T:',T fixed=nib.load(fnameFixed) F=fixed.get_affine() print 'F:',F fixed=fixed.get_data().squeeze().astype(np.float64) moving=nib.load(fnameMoving) M=moving.get_affine() print 'M:',M moving=moving.get_data().squeeze().astype(np.float64) initAffine=np.linalg.inv(M).dot(T.dot(F)) fixed=np.copy(fixed, order='C') moving=np.copy(moving, order='C') warped=np.array(tf.warp_volume_affine(moving, np.array(fixed.shape).astype(np.int32), initAffine)) sh=warped.shape rcommon.overlayImages(warped[sh[0]//2,:,:], fixed[sh[0]//2,:,:]) rcommon.overlayImages(warped[:,sh[1]//2,:], fixed[:,sh[1]//2,:]) rcommon.overlayImages(warped[:,:,sh[2]//2], fixed[:,:,sh[2]//2])