Exemple #1
0
def paste_nodes(hie, top, graph_id, parent_path, nodes, mouse_x, mouse_y):
    """paste the selected nodes from graph at parent_path to graph_id"""
    path_list = [s for s in parent_path.split("/") if s and not s.isspace()]
    other_id = child_from_path(hie, top, path_list)
    gr = hie.node[graph_id].graph
    other_gr = hie.node[other_id].graph
    old_to_new = {}

    # check that all copied nodes exist in the graph
    for node in nodes:
        if node not in other_gr:
            raise ValueError(
                "copied node {} does not exist anymore".format(node))

    if hie.has_edge(graph_id, other_id):
        mapping = hie.edge[graph_id][other_id].mapping
        for node in nodes:
            n_id = prim.unique_node_id(gr, node)
            prim.add_node(gr, n_id, other_gr.node[node])
            old_to_new[node] = n_id
            mapping[n_id] = node
        for (source, target) in other_gr.subgraph(nodes).edges():
            prim.add_edge(gr, old_to_new[source], old_to_new[target],
                          other_gr.edge[source][target])
    else:
        # check that all necessary typings are there
        necessary_typings = [typing for typing in hie.successors(graph_id)]
        #  if hie.edge[graph_id][typing].total]
        # until UI can handle partial typings
        typings = [typing for typing in hie.successors(graph_id)
                   if typing in hie.successors(other_id)]
        for typing in necessary_typings:
            if typing not in typings:
                raise ValueError("copied nodes not typed by {}".format(typing))
            for node in nodes:
                if node not in hie.edge[other_id][typing].mapping:
                    raise ValueError("copied node {} is not typed by {}"
                                     .format(node, typing))
        for node in nodes:
            node_id = prim.unique_node_id(gr, node)
            old_to_new[node] = node_id
            prim.add_node(gr, node_id, other_gr.node[node])
            for typing in typings:
                other_mapping = hie.edge[other_id][typing].mapping
                if node in other_mapping:
                    hie.edge[graph_id][typing].mapping[old_to_new[node]] =\
                        other_mapping[node]
        for (source, target) in other_gr.subgraph(nodes).edges():
            prim.add_edge(gr, old_to_new[source], old_to_new[target],
                          other_gr.edge[source][target])

    if "positions" in hie.node[other_id].attrs:
        if "positions" not in hie.node[graph_id].attrs:
            hie.node[graph_id].attrs["positions"] = {}
        positions_old = hie.node[other_id].attrs["positions"]
        positions_new = hie.node[graph_id].attrs["positions"]
        add_positions(mouse_x, mouse_y, positions_old, positions_new,
                      old_to_new)
Exemple #2
0
 def _add_node_lhs(self, node_id, attrs=None):
     if node_id not in self.lhs.nodes():
         primitives.add_node(self.lhs, node_id, attrs)
         new_p_node_id = node_id
         if new_p_node_id in self.p.nodes():
             new_p_node_id = primitives.unique_node_id(new_p_node_id)
         primitives.add_node(self.p, new_p_node_id, attrs)
         self.p_lhs[new_p_node_id] = node_id
         new_rhs_node_id = node_id
         if new_rhs_node_id in self.rhs.nodes():
             new_rhs_node_id = primitives.unique_node_id(new_rhs_node_id)
         primitives.add_node(self.rhs, new_rhs_node_id, attrs)
         self.p_rhs[new_p_node_id] = new_rhs_node_id
     else:
         raise RuleError(
             "Node '%s' already exists in the left-hand side "
             "of the rule" % node_id)
Exemple #3
0
def merge_graphs(hie, g_id, name1, name2, mapping, new_name):
    """ merge two graph based  on an identity relation
        between their nodes.
        We first build a span from the given relation.
        The new graph is then computed as the pushout. """
    new_name = get_valid_name(hie, g_id, new_name)
    id1 = child_from_name(hie, g_id, name1)
    id2 = child_from_name(hie, g_id, name2)
    g1 = hie.node[id1].graph
    g2 = hie.node[id2].graph

    # build the span from the relation
    if hie.directed:
        g0 = nx.DiGraph()
    else:
        g0 = nx.Graph()
    left_mapping = {}
    right_mapping = {}
    for (n1, n2) in mapping:
        new_node = unique_node_id(g0, n2)
        prim.add_node(g0, new_node)
        left_mapping[new_node] = n1
        right_mapping[new_node] = n2

    # compute the pushout
    (new_graph, g1_new_graph, g2_new_graph) = \
        pushout(g0, g1, g2, left_mapping, right_mapping)
    new_id = hie.unique_graph_id(new_name)
    new_attrs = _new_merged_graph_attrs(hie, id1, id2, new_name)
    hie.add_graph(new_id, new_graph, new_attrs)

    # recover the typings of the new pushout graph
    g1_typings = {t: hie.edge[id1][t] for t in hie.successors(id1)}
    g2_typings = {t: hie.edge[id2][t] for t in hie.successors(id2)}
    new_typings = typings_of_pushout(g1, g2, new_graph, g1_new_graph,
                                     g2_new_graph, g1_typings, g2_typings)

    for (typ_id, (typ_mapping, typ_total)) in new_typings.items():
        hie.add_typing(new_id, typ_id, typ_mapping, total=typ_total)

    # recover the typings of children by the new pushout graph
    new_id1 = _copy_graph(hie, new_id)
    for child in all_children(hie, id1):
        hie.add_edge(child, new_id1)
        tmp_typ = Typing(g1_new_graph, total=hie.edge[child][id1].all_total())
        hie.edge[child][new_id1] = tmp_typ * hie.edge[child][id1]

    new_id2 = _copy_graph(hie, new_id)
    for child in all_children(hie, id2):
        hie.add_edge(child, new_id2)
        tmp_typ = Typing(g2_new_graph, total=hie.edge[child][id2].all_total())
        hie.edge[child][new_id2] = tmp_typ * hie.edge[child][id2]

    _merge_hierarchy(hie, hie, new_id, new_id1)
    _merge_hierarchy(hie, hie, new_id, new_id2)
    hie.remove_node(new_id1)
    hie.remove_node(new_id2)
Exemple #4
0
def merge_graphs(hie, g_id, name1, name2, mapping, new_name):
    """ merge two graph based  on an identity relation
        between their nodes.
        We first build a span from the given relation.
        The new graph is then computed as the pushout. """
    new_name = get_valid_name(hie, g_id, new_name)
    id1 = child_from_name(hie, g_id, name1)
    id2 = child_from_name(hie, g_id, name2)
    g1 = hie.node[id1].graph
    g2 = hie.node[id2].graph

    # build the span from the relation
    if hie.directed:
        g0 = nx.DiGraph()
    else:
        g0 = nx.Graph()
    left_mapping = {}
    right_mapping = {}
    for (n1, n2) in mapping:
        new_node = unique_node_id(g0, n2)
        prim.add_node(g0, new_node)
        left_mapping[new_node] = n1
        right_mapping[new_node] = n2

    # compute the pushout
    (new_graph, g1_new_graph, g2_new_graph) = \
        pushout(g0, g1, g2, left_mapping, right_mapping)
    new_id = hie.unique_graph_id(new_name)
    new_attrs = _new_merged_graph_attrs(hie, id1, id2, new_name)
    hie.add_graph(new_id, new_graph, new_attrs)

    # recover the typings of the new pushout graph
    g1_typings = {t: hie.edge[id1][t] for t in hie.successors(id1)}
    g2_typings = {t: hie.edge[id2][t] for t in hie.successors(id2)}
    new_typings = typings_of_pushout(g1, g2, new_graph, g1_new_graph,
                                     g2_new_graph, g1_typings, g2_typings)

    for (typ_id, (typ_mapping, typ_total)) in new_typings.items():
        hie.add_typing(new_id, typ_id, typ_mapping, total=typ_total)

    # recover the typings of children by the new pushout graph
    new_id1 = _copy_graph(hie, new_id)
    for child in all_children(hie, id1):
        hie.add_edge(child, new_id1)
        tmp_typ = Typing(g1_new_graph, total=hie.edge[child][id1].all_total())
        hie.edge[child][new_id1] = tmp_typ * hie.edge[child][id1]

    new_id2 = _copy_graph(hie, new_id)
    for child in all_children(hie, id2):
        hie.add_edge(child, new_id2)
        tmp_typ = Typing(g2_new_graph, total=hie.edge[child][id2].all_total())
        hie.edge[child][new_id2] = tmp_typ * hie.edge[child][id2]

    _merge_hierarchy(hie, hie, new_id, new_id1)
    _merge_hierarchy(hie, hie, new_id, new_id2)
    hie.remove_node(new_id1)
    hie.remove_node(new_id2)
Exemple #5
0
def link_components(hie, g_id, comp1, comp2, kami_id):
    """ link two componenst together with brk, bnd"""
    typing = hie.edge[g_id][kami_id].mapping
    graph = hie.node[g_id].graph
    print(graph)

    bnd_name = unique_node_id(graph, "bnd %s-%s" % (comp1, comp2))
    typing[bnd_name] = "bnd"
    add_node(graph, bnd_name)

    #brk_name = unique_node_id(graph, "brk")
    #add_node(graph, brk_name)
    #typing[brk_name] = "brk"

    #loc1 = unique_node_id(graph, "loc")
    #add_node(graph, loc1)
    #typing[loc1] = "locus"
    #loc2 = unique_node_id(graph, "loc")
    #add_node(graph, loc2)
    #typing[loc2] = "locus"

    add_edge(graph, comp1, bnd_name)
    add_edge(graph, comp2, bnd_name)
    #add_edge(graph, loc1, comp1)
    #add_edge(graph, loc1, bnd_name)
    #add_edge(graph, loc1, brk_name)
    #add_edge(graph, loc2, comp2)
    #add_edge(graph, loc2, bnd_name)
    #add_edge(graph, loc2, brk_name)

    if "positions" in hie.node[g_id].attrs:
        positions = hie.node[g_id].attrs["positions"]
        if comp1 in positions.keys():
            xpos1 = positions[comp1].get("x", 0)
            ypos1 = positions[comp1].get("y", 0)
        else:
            (xpos1, ypos1) = (0, 0)
        if comp2 in positions.keys():
            xpos2 = positions[comp2].get("x", 0)
            ypos2 = positions[comp2].get("y", 0)
        else:
            (xpos2, ypos2) = (0, 0)
        difx = xpos2 - xpos1
        dify = ypos2 - ypos1
        if (difx, dify) != (0, 0):
            distance = sqrt(difx * difx + dify * dify)
            vect = (difx / distance, dify / distance)
            #positions[loc1] = {"x": xpos1+vect[0]*distance/3,
            #                   "y": ypos1+vect[1]*distance/3}
            #positions[loc2] = {"x": xpos1+vect[0]*distance/3*2,
            #                   "y": ypos1+vect[1]*distance/3*2}
            positions[bnd_name] = {
                "x": (xpos1 + vect[0] * distance / 2),  # +
                #vect[1]*60),
                "y": (ypos1 + vect[1] * distance / 2)
            }  # -
Exemple #6
0
def add_node(hie, g_id, parent, node_id, node_type, new_name=False):
    """add a node to a graph in the hierarchy"""
    # if parent is not None and node_type is None:
    #     raise ValueError("node {} must have a type".format(node_id))
    if isinstance(hie.node[g_id], GraphNode):
        if node_id in hie.node[g_id].graph.nodes():
            if new_name:
                node_id = prim.unique_node_id(hie.node[g_id].graph, node_id)
            else:
                raise ValueError(
                    "node {} already exists in graph".format(node_id))

        # check that we have sufficient typings
        for typing in hie.successors(g_id):
            if hie.edge[g_id][typing].total:
                if typing != parent or (typing == parent
                                        and node_type is None):
                    raise ValueError(
                        "new node must be typed by {}".format(typing))
        prim.add_node(hie.node[g_id].graph, node_id)
        if parent is not None and node_type is not None:
            hie.edge[g_id][parent].mapping[node_id] = node_type
        return node_id
    elif isinstance(hie.node[g_id], RuleNode):
        tmp_rule = copy.deepcopy(hie.node[g_id].rule)
        tmp_rule.add_node(node_id)
        typings = [(hie.node[typing].graph, hie.edge[g_id][typing])
                   for _, typing in hie.out_edges(g_id) if typing != parent]
        # tmp_parent_typing = copy.deepcopy(hie.edge[g_id][parent])
        # tmp_parent_typing.rhs_mapping[node_id] = node_type
        if parent is not None and node_type is not None:
            parent_typing = copy.deepcopy(hie.edge[g_id][parent])
            if node_type is not None:
                parent_typing.rhs_mapping[node_id] = node_type
            typings.append((hie.node[parent].graph, parent_typing))
        check_rule_typings(typings, tmp_rule)
        hie.node[g_id].rule = tmp_rule
        if parent is not None:
            hie.edge[g_id][parent] = parent_typing
        return node_id
    else:
        raise ValueError("node is neither a rule nor a graph")
Exemple #7
0
def add_node(hie, g_id, parent, node_id, node_type, new_name=False):
    """add a node to a graph in the hierarchy"""
    # if parent is not None and node_type is None:
    #     raise ValueError("node {} must have a type".format(node_id))
    if isinstance(hie.node[g_id], GraphNode):
        if node_id in hie.node[g_id].graph.nodes():
            if new_name:
                node_id = prim.unique_node_id(hie.node[g_id].graph, node_id)
            else:
                raise ValueError(
                    "node {} already exists in graph".format(node_id))

        # check that we have sufficient typings
        for typing in hie.successors(g_id):
            if hie.edge[g_id][typing].total:
                if typing != parent or (typing == parent and node_type is None):
                    raise ValueError("new node must be typed by {}"
                                     .format(typing))
        prim.add_node(hie.node[g_id].graph, node_id)
        if parent is not None and node_type is not None:
            hie.edge[g_id][parent].mapping[node_id] = node_type
        return node_id
    elif isinstance(hie.node[g_id], RuleNode):
        tmp_rule = copy.deepcopy(hie.node[g_id].rule)
        tmp_rule.add_node(node_id)
        typings = [(hie.node[typing].graph, hie.edge[g_id][typing])
                   for _, typing in hie.out_edges(g_id)
                   if typing != parent]
        # tmp_parent_typing = copy.deepcopy(hie.edge[g_id][parent])
        # tmp_parent_typing.rhs_mapping[node_id] = node_type
        if parent is not None and node_type is not None:
            parent_typing = copy.deepcopy(hie.edge[g_id][parent])
            if node_type is not None:
                parent_typing.rhs_mapping[node_id] = node_type
            typings.append((hie.node[parent].graph, parent_typing))
        check_rule_typings(typings, tmp_rule)
        hie.node[g_id].rule = tmp_rule
        if parent is not None:
            hie.edge[g_id][parent] = parent_typing
        return node_id
    else:
        raise ValueError("node is neither a rule nor a graph")
Exemple #8
0
def paste_nodes(hie, top, graph_id, parent_path, nodes, mouse_x, mouse_y):
    """paste the selected nodes from graph at parent_path to graph_id"""
    path_list = [s for s in parent_path.split("/") if s and not s.isspace()]
    other_id = child_from_path(hie, top, path_list)
    gr = hie.node[graph_id].graph
    other_gr = hie.node[other_id].graph
    old_to_new = {}

    # check that all copied nodes exist in the graph
    for node in nodes:
        if node not in other_gr:
            raise ValueError(
                "copied node {} does not exist anymore".format(node))

    if hie.has_edge(graph_id, other_id):
        mapping = hie.edge[graph_id][other_id].mapping
        for node in nodes:
            n_id = prim.unique_node_id(gr, node)
            prim.add_node(gr, n_id, other_gr.node[node])
            old_to_new[node] = n_id
            mapping[n_id] = node
        for (source, target) in other_gr.subgraph(nodes).edges():
            prim.add_edge(gr, old_to_new[source], old_to_new[target],
                          other_gr.edge[source][target])
    else:
        # check that all necessary typings are there
        necessary_typings = [typing for typing in hie.successors(graph_id)]
        #  if hie.edge[graph_id][typing].total]
        # until UI can handle partial typings
        typings = [
            typing for typing in hie.successors(graph_id)
            if typing in hie.successors(other_id)
        ]
        for typing in necessary_typings:
            if typing not in typings:
                raise ValueError("copied nodes not typed by {}".format(typing))
            for node in nodes:
                if node not in hie.edge[other_id][typing].mapping:
                    raise ValueError(
                        "copied node {} is not typed by {}".format(
                            node, typing))
        for node in nodes:
            node_id = prim.unique_node_id(gr, node)
            old_to_new[node] = node_id
            prim.add_node(gr, node_id, other_gr.node[node])
            for typing in typings:
                other_mapping = hie.edge[other_id][typing].mapping
                if node in other_mapping:
                    hie.edge[graph_id][typing].mapping[old_to_new[node]] =\
                        other_mapping[node]
        for (source, target) in other_gr.subgraph(nodes).edges():
            prim.add_edge(gr, old_to_new[source], old_to_new[target],
                          other_gr.edge[source][target])

    if "positions" in hie.node[other_id].attrs:
        if "positions" not in hie.node[graph_id].attrs:
            hie.node[graph_id].attrs["positions"] = {}
        positions_old = hie.node[other_id].attrs["positions"]
        positions_new = hie.node[graph_id].attrs["positions"]
        add_positions(mouse_x, mouse_y, positions_old, positions_new,
                      old_to_new)
Exemple #9
0
def remove_conflict(hie, ag_id, mm_id, locus, suffix=None):
    """duplicates a locus in order to remove conflicts"""
    ag_gr = hie.node[ag_id].graph
    ag_mm = hie.get_typing(ag_id, mm_id)
    nuggets = [
        nug for nug in tree.get_children_id_by_node(hie, ag_id, locus)
        if hie.node[nug].attrs["type"] == "nugget"
    ]

    # Do not merge nodes that are Not valid
    # As they are removed from the botom graph before the pushout
    not_valid = [locus]

    def valid_pullback_node(a, b, c, d, a_b, a_c, b_d, c_d, n):
        a_d = union_mappings(compose_homomorphisms(b_d, a_b),
                             compose_homomorphisms(c_d, a_c))
        return n not in a_d or a_d[n] not in not_valid

    (pp, pp_ag) = multi_pullback_pushout(
        ag_gr, [(hie.node[nug].graph, hie.get_typing(nug, ag_id))
                for nug in nuggets], valid_pullback_node)

    adj_nodes = [suc for suc in ag_gr.successors(locus)] + [locus]

    lhs = ag_gr.subgraph(adj_nodes)
    new_pp = pp.subgraph(reverse_image(pp_ag, adj_nodes))

    # add regions and agents that do not appear in any nuggets to the
    # preserved part, so we can remove edges from the locus to them
    to_add = {
        suc
        for suc in ag_gr.successors(locus)
        if ag_mm[suc] in ["region", "agent"]
    } - set(pp_ag.values())
    for node in to_add:
        node_id = unique_node_id(new_pp, node)
        add_node(new_pp, node_id)
        pp_ag[node_id] = node

    newpp_lhs = restrict_mapping(new_pp.nodes(), pp_ag)

    # merge loci from preserved part that arr linked to the same other loci
    def linked_to(loc):
        """loc being a locus from new_pp, returns the ag loci linked to loc """
        adj_acts = {
            pp_ag[act]
            for act in new_pp.successors(loc)
            if ag_mm[pp_ag[act]] not in ["region", "agent"]
        }
        return {
            other_loc
            for act in adj_acts for other_loc in ag_gr.predecessors(act)
            if other_loc != locus
        }

    # compute equivalence classes of loci
    loci = [pploc for pploc in new_pp if pp_ag[pploc] == locus]
    classes = [{pploc} for pploc in loci]
    partial_eq = [{loc1, loc2} for loc1 in loci for loc2 in loci
                  if loc1 != loc2 and linked_to(loc1) & linked_to(loc2)]
    for eq in partial_eq:
        classes = merge_classes(eq, classes)

    eq_gr = nx.DiGraph()
    newpp_eq = {}
    for i, cl in enumerate(classes):
        eq_gr.add_node(i)
        for node in cl:
            newpp_eq[node] = i

    (new_pp, newpp_lhs) = pushout_from_partial_mapping(new_pp, eq_gr, newpp_eq,
                                                       newpp_lhs, {})

    lhs_ag = id_of(lhs)
    rhs = copy.deepcopy(new_pp)
    rule = Rule(new_pp, lhs, rhs, newpp_lhs)
    if suffix is None:
        apply_rule_on_parent_inplace(hie, ag_id, rule, lhs_ag)
    else:
        raise ValueError("TODO? rewrite not in place")
Exemple #10
0
def unfold_locus(hie, ag_id, mm_id, locus, suffix=None):
    """duplicate a locus that is shared between agents"""
    ag_gr = hie.node[ag_id].graph
    ag_mm = hie.get_typing(ag_id, mm_id)
    nuggets = [
        nug for nug in tree.get_children_id_by_node(hie, ag_id, locus)
        if hie.node[nug].attrs["type"] == "nugget"
    ]
    # Do not merge nodes that are Not valid
    # As they are removed from the botom graph before the pushout
    not_valid = [locus] + [
        node
        for node in ag_gr[locus] if ag_mm[node] not in ["region", "agent"]
    ]

    def valid_pullback_node(a, b, c, d, a_b, a_c, b_d, c_d, n):
        a_d = union_mappings(compose_homomorphisms(b_d, a_b),
                             compose_homomorphisms(c_d, a_c))
        return n not in a_d or a_d[n] not in not_valid

    (pp, pp_ag) = multi_pullback_pushout(
        ag_gr, [(hie.node[nug].graph, hie.get_typing(nug, ag_id))
                for nug in nuggets], valid_pullback_node)

    adj_nodes = [suc for suc in ag_gr.successors(locus)] + [locus]

    lhs = ag_gr.subgraph(adj_nodes)
    new_pp = pp.subgraph(reverse_image(pp_ag, adj_nodes))

    # add regions and agents that do not appear in any nuggets to the
    # preserved part, so we can remove edges from the locus to them
    to_add = {
        suc
        for suc in ag_gr.successors(locus)
        if ag_mm[suc] in ["region", "agent"]
    } - set(pp_ag.values())
    for node in to_add:
        node_id = unique_node_id(new_pp, node)
        add_node(new_pp, node_id)
        pp_ag[node_id] = node

    newpp_lhs = restrict_mapping(new_pp.nodes(), pp_ag)

    # merge loci that have a shared successor component
    def common_comp(loc1, loc2):
        comps1 = {
            c
            for c in new_pp.successors(loc1)
            if ag_mm[pp_ag[c]] in ["region", "agent"]
        }
        comps2 = {
            c
            for c in new_pp.successors(loc2)
            if ag_mm[pp_ag[c]] in ["region", "agent"]
        }
        return comps1 & comps2

    # compute equivalence classes of loci
    loci = [pploc for pploc in new_pp if pp_ag[pploc] == locus]
    classes = [{pploc} for pploc in loci]
    partial_eq = [{loc1, loc2} for (loc1, loc2) in combinations(loci, 2)
                  if loc1 != loc2 and common_comp(loc1, loc2)]
    for eq in partial_eq:
        classes = merge_classes(eq, classes)

    # compute equivalence classes of action nodes
    def equiv_acts(act1, act2):
        def equiv_loci(locs1, locs2):
            if len(locs1) != 1:
                raise ValueError(
                    "should have exactly one locus next to action")
            if len(locs2) != 1:
                raise ValueError(
                    "should have exactly one locus next to action")
            return any(set(locs1) | set(locs2) <= cl for cl in classes)

        return (pp_ag[act1] == pp_ag[act2] and equiv_loci(
            new_pp.predecessors(act1), new_pp.predecessors(act2)))

    actions = [
        act for act in new_pp
        if ag_mm[pp_ag[act]] in ["is_bnd", "bnd", "is_free", "brk"]
    ]
    action_classes = [{act} for act in actions]
    for (act1, act2) in combinations(actions, 2):
        if equiv_acts(act1, act2):
            action_classes = merge_classes({act1, act2}, action_classes)

    eq_gr = nx.DiGraph()
    newpp_eq = {}
    for i, cl in enumerate(classes + action_classes):
        eq_gr.add_node(i)
        for node in cl:
            newpp_eq[node] = i

    (new_pp, newpp_lhs) = pushout_from_partial_mapping(new_pp, eq_gr, newpp_eq,
                                                       newpp_lhs, {})

    lhs_ag = id_of(lhs)
    rhs = copy.deepcopy(new_pp)
    rule = Rule(new_pp, lhs, rhs, newpp_lhs)
    if suffix is None:
        apply_rule_on_parent_inplace(hie, ag_id, rule, lhs_ag)
    else:
        raise ValueError("TODO? rewrite not in place")
Exemple #11
0
def unfold_nugget(hie, nug_id, ag_id, mm_id, test=False):
    """unfold a nugget with conflicts to create multiple nuggets"""
    nug_gr = copy.deepcopy(hie.node[nug_id].graph)
    mm_typing = copy.deepcopy(hie.get_typing(nug_id, mm_id))
    ag_typing = copy.deepcopy(hie.get_typing(nug_id, ag_id))

    # create one new locus for each linked agent, region or residue linked to
    #  a locus
    new_ports = {}  # new_port remember the loci/state it is created from
    old_ports = []
    non_comp_neighbors = {}
    for node in nug_gr.nodes():

        # move the state test to explicit "is_equal" nodes
        if mm_typing[node] == "state" and "val" in nug_gr.node[node]:
            for val in nug_gr.node[node]["val"]:
                id_prefix = "{}_{}".format(val, node)
                test_id = unique_node_id(nug_gr, id_prefix)
                add_node(nug_gr, test_id, {"val": val})
                mm_typing[test_id] = "is_equal"
                add_edge(nug_gr, test_id, node)

                # for testing
                if test:
                    ag = hie.node[ag_id].graph
                    ag_test_id = unique_node_id(ag, id_prefix)
                    add_node(ag, ag_test_id, {"val": val})
                    add_edge(ag, ag_test_id, ag_typing[node])
                    hie.edge[ag_id][mm_id].mapping[ag_test_id] = "is_equal"

                    real_nugget = hie.node[nug_id].graph
                    old_test_id = unique_node_id(real_nugget, id_prefix)
                    add_node(real_nugget, old_test_id, {"val": val})
                    add_edge(real_nugget, old_test_id, node)
                    hie.edge[nug_id][ag_id].mapping[old_test_id] = ag_test_id

        if mm_typing[node] in ["locus", "state"]:
            comp_neighbors = [
                comp for comp in nug_gr.successors(node)
                if mm_typing[comp] in ["agent", "region", "residue"]
            ]
            other_neighbors = [
                other for other in (nug_gr.successors(node) +
                                    nug_gr.predecessors(node))
                if other not in comp_neighbors
            ]
            old_ports.append(node)
            for comp in comp_neighbors:
                id_prefix = "{}_{}".format(node, comp)
                port_id = unique_node_id(nug_gr, id_prefix)
                add_node(nug_gr, port_id)
                mm_typing[port_id] = mm_typing[node]
                ag_typing[port_id] = ag_typing[node]
                new_ports[port_id] = node
                add_edge(nug_gr, port_id, comp)
                for other in other_neighbors:
                    if mm_typing[other] in ["mod", "is_equal"]:
                        add_edge(nug_gr, other, port_id)
                    else:
                        add_edge(nug_gr, port_id, other)
                non_comp_neighbors[port_id] = set(other_neighbors)

    # remove the old potentially shared between agents/region/residues loci
    for port in old_ports:
        remove_node(nug_gr, port)
        del mm_typing[port]
        del ag_typing[port]

    # associate the components nodes (agent,region, residue) to the ports
    components = {}
    for port in new_ports:
        components[port] = _agents_of_components(nug_gr, mm_typing, port)

    def _nonconflicting(port1, action_node1, port2, action_node2):
        typ1 = mm_typing[action_node1]
        typ2 = mm_typing[action_node2]
        if port1 == port2:
            if typ1 == typ2:
                return False
            if mm_typing[port1] == "state":
                return True
            if {typ1, typ2} & {"is_free", "is_bnd"}:
                return False
            different_loci = set(nug_gr.predecessors(action_node1)) !=\
                set(nug_gr.predecessors(action_node2))
            return different_loci

        elif action_node1 != action_node2:
            return True
        elif typ1 in ["mod", "is_equal", "is_free"]:
            return False
        else:
            return new_ports[port1] != new_ports[port2]

    def replace(node):
        """identify is_equal and mod nodes with same values"""
        if mm_typing[node] == "is_equal":
            return ("is_equal", str(nug_gr.node[node]["val"]))
        if mm_typing[node] == "mod":
            return ("mod", str(nug_gr.node[node]["val"]))
        return node

    def reduce_subsets(set_list):
        return set_list

    def subset_up_to_equivalence(set1, set2):
        set1 = {frozenset(map(replace, s)) for s in set1}
        set2 = {frozenset(map(replace, s)) for s in set2}
        return set1.issubset(set2)

    def replace2(node):
        """identify is_equal and mod nodes with same values"""
        if mm_typing[node] == "is_equal":
            return ("is_equal", str(nug_gr.node[node]["val"]),
                    frozenset(nug_gr.successors(node)))
        if mm_typing[node] == "mod":
            return ("mod", str(nug_gr.node[node]["val"]),
                    frozenset(nug_gr.successors(node)))
        return node

    def _equivalent_actions(act1, act2, edge_list):
        l1 = [(port, replace(node)) for (port, node) in edge_list
              if node == act1]
        l2 = [(port, replace(node)) for (port, node) in edge_list
              if node == act2]
        return l1 == l2

    def _equivalent_edge(p1, a1, p2, a2):
        return p1 == p2 and replace2(a1) == replace2(a2)

    def _valid_subsets(memo_dict, set_list):
        """build non conflicting sets of sets of nodes"""
        if set_list == []:
            return [[]]
        memo_key = frozenset(set_list)
        if memo_key in memo_dict:
            return memo_dict[memo_key]
        (port, a_node) = set_list[0]
        conflicting_edges = [
            (port2, a_node2) for (port2, a_node2) in set_list[1:]
            if not _nonconflicting(port, a_node, port2, a_node2)
        ]

        nonconflicting_sets =\
            [(port2, a_node2) for (port2, a_node2) in set_list[1:]
             if _nonconflicting(port, a_node, port2, a_node2)]
        equivalent_edges = [
            (p2, n2) for (p2, n2) in set_list
            if p2 == port and _equivalent_actions(a_node, n2, set_list)
        ]

        new_set_list = [
            (p2, n2) for (p2, n2) in set_list[1:]
            if p2 != port or not _equivalent_actions(a_node, n2, set_list)
        ]

        cond1 = (len([node
                      for (_, node) in set_list[1:] if node == a_node]) == 0
                 and all(
                     replace(n2) == replace(a_node)
                     for (p2, n2) in set_list[1:] if p2 == port))

        if nonconflicting_sets == new_set_list or cond1:
            memo_dict[memo_key] =\
                [sub + [(port, a_node)]
                 for sub in _valid_subsets(memo_dict, nonconflicting_sets)]
            return memo_dict[memo_key]
        else:
            without_current_edge = _valid_subsets(memo_dict, new_set_list)

            def conflict_with_removed_edges(edge_list):
                return all(
                    any(not _nonconflicting(p1, a_node1, p2, a_node2)
                        for (p2, a_node2) in edge_list)
                    for (p1, a_node1) in equivalent_edges)

            # with_conflict = list(filter(conflict_with_current_edge, without_current_edge))
            with_conflict = list(
                filter(conflict_with_removed_edges, without_current_edge))
            memo_dict[memo_key] =\
                with_conflict +\
                [sub + [(port, a_node)]
                 for sub in _valid_subsets(memo_dict, nonconflicting_sets)]
            return memo_dict[memo_key]

    def _complete_subsets(set_list):
        print(set_list)
        return [components[port] | {a_node} for (port, a_node) in set_list]

    def _remove_uncomplete_actions(set_list):
        """remove actions and test which are not connected to enough
         components"""
        labels = {node: 0 for node in nug_gr.nodes()}
        for nodes in set_list:
            for node in nodes:
                labels[node] += 1

        to_remove = set()
        for node in nug_gr.nodes():
            if (mm_typing[node] in ["bnd", "brk", "is_bnd"]
                    and labels[node] < 2):
                to_remove.add(node)
            if (mm_typing[node] in ["is_free", "mod", "is_equal"]
                    and labels[node] < 1):
                to_remove.add(node)

        return [nodes for nodes in set_list if not nodes & to_remove]

    port_action_list = [(port, a_node)
                        for (port, a_nodes) in non_comp_neighbors.items()
                        for a_node in a_nodes]

    # build globally non conflicting subsets and remove the uncomplete actions
    memo_dict = {}
    valid_ncss = {
        frozenset(
            map(frozenset,
                _remove_uncomplete_actions(_complete_subsets(set_list))))
        for set_list in _valid_subsets(memo_dict, port_action_list)
    }
    maximal_valid_ncss = valid_ncss

    # add the nodes that where not considered at all
    # because they are not connected to a locus or state
    nodes_with_ports = set.union(
        set.union(*(list(non_comp_neighbors.values()) + [set()])),
        set.union(*(list(components.values()) + [set()])))

    nodes_without_ports = set(nug_gr.nodes()) - nodes_with_ports

    # build the nuggets and add them to the hierarchy
    # as children of the old one for testing
    def _graph_of_ncs(ncs):
        sub_graphs = [(subgraph(nug_gr, nodes), {node: node
                                                 for node in nodes})
                      for nodes in ncs]
        sub_graphs.append((subgraph(nug_gr, nodes_without_ports),
                           {node: node
                            for node in nodes_without_ports}))
        return multi_pullback_pushout(nug_gr, sub_graphs)

    valid_graphs = map(_graph_of_ncs, maximal_valid_ncss)
    new_nuggets = []
    for (new_nugget, new_typing) in valid_graphs:
        if test:
            typing_by_old_nugget = {}
            for node in new_nugget.nodes():
                if new_typing[node] in hie.node[nug_id].graph.nodes():
                    typing_by_old_nugget[node] = new_typing[node]
                else:
                    typing_by_old_nugget[node] = new_ports[new_typing[node]]
            new_nuggets.append((new_nugget, typing_by_old_nugget))
        else:
            new_ag_typing = compose_homomorphisms(ag_typing, new_typing)
            new_mm_typing = compose_homomorphisms(mm_typing, new_typing)
            new_nuggets.append((new_nugget, new_ag_typing, new_mm_typing))
    return new_nuggets
Exemple #12
0
    def inject_clone_node(self, n, new_node_id=None):
        """Inject cloning of a node by the rule.

        This procedure clones `n` in the preserved part
        and the right-hand side.

        Parameters
        ----------
        n : hashable
            Node from `lhs` to clone
        new_node_id : hashable
            Id for the clone

        Returns
        -------
        p_new_node_id : hashable
            Id of the new clone node in the preserved part
        rhs_new_node_id : hashable
            Id of the new clone node in the right-hand side


        Raises
        ------
        RuleError
            If the node to clone is already being removed by the rule
            or if node with the specified clone id already exists in p.
        """
        p_nodes = keys_by_value(self.p_lhs, n)
        if len(p_nodes) == 0:
            raise RuleError(
                "Cannot inject cloning: node '%s' is already "
                "being removed by the rule, revert its removal "
                "first" % n)
        else:
            if new_node_id is not None and new_node_id in self.p.nodes():
                raise RuleError(
                    "Node with id '%s' already exists in the "
                    "preserved part!")
            some_p_node = p_nodes[0]
            p_new_node_id = primitives.clone_node(
                self.p, some_p_node, new_node_id)
            self.p_lhs[p_new_node_id] = n
            # add it to the rhs
            # generate a new id for rhs
            rhs_new_node_id = p_new_node_id
            if rhs_new_node_id in self.rhs.nodes():
                rhs_new_node_id = primitives.unique_node_id(
                    self.rhs, rhs_new_node_id)
            primitives.add_node(
                self.rhs, rhs_new_node_id, self.p.node[p_new_node_id])
            self.p_rhs[p_new_node_id] = rhs_new_node_id
            # reconnect the new rhs node with necessary edges
            for pred in self.p.predecessors(p_new_node_id):
                if (self.p_rhs[pred], rhs_new_node_id) not in self.rhs.edges():
                    primitives.add_edge(
                        self.rhs,
                        self.p_rhs[pred], rhs_new_node_id,
                        self.p.edge[pred][p_new_node_id])
            for suc in self.p.successors(p_new_node_id):
                if (rhs_new_node_id, self.p_rhs[suc]) not in self.rhs.edges():
                    primitives.add_edge(
                        self.rhs,
                        rhs_new_node_id, self.p_rhs[suc],
                        self.p.edge[p_new_node_id][suc])

        return (p_new_node_id, rhs_new_node_id)