def pushout_from_relation(g1, g2, relation, inplace=False): """Find the pushout from a relation.""" left_dict = left_relation_dict(relation) right_dict = right_relation_dict(relation) if inplace is True: g12 = g1 else: g12 = copy.deepcopy(g1) g1_g12 = id_of(g12.nodes()) g2_g12 = dict() for node in g1.nodes(): if node in left_dict.keys(): for g2_node in left_dict[node]: g2_g12[g2_node] = node for node in g2.nodes(): if node not in right_dict.keys(): node_id = node if node_id in g12.nodes(): node_id = unique_node_id(g12, node) add_node(g12, node_id, g2.node[node]) g2_g12[node] = node_id elif len(right_dict[node]) == 1: node_attrs_diff = dict_sub( g2.node[node], g1.node[list(right_dict[node])[0]]) add_node_attrs( g12, list(right_dict[node])[0], node_attrs_diff) elif len(right_dict[node]) > 1: new_name = merge_nodes(g12, right_dict[node]) for g1_node in right_dict[node]: g1_g12[g1_node] = new_name g2_g12[node] = new_name node_attrs_diff = dict_sub( g2.node[node], g12.node[new_name]) add_node_attrs(g12, new_name, node_attrs_diff) for u, v in g2.edges(): if (g2_g12[u], g2_g12[v]) not in g12.edges(): add_edge(g12, g2_g12[u], g2_g12[v], get_edge(g2, u, v)) else: edge_attrs_diff = dict_sub( g2.adj[u][v], g12.adj[g2_g12[u]][g2_g12[v]]) add_edge_attrs(g12, g2_g12[u], g2_g12[v], edge_attrs_diff) return (g12, g1_g12, g2_g12)
def added_edge_attrs(self): """Get edge attributes added by the rule. Returns ------- attrs : dict Dictionary where keys are edges from `rhs` and values are attribute dictionaries to add. """ attrs = dict() for s, t in self.rhs.edges(): s_p_nodes = keys_by_value(self.p_rhs, s) t_p_nodes = keys_by_value(self.p_rhs, t) new_attrs = {} for s_p_node in s_p_nodes: for t_p_node in t_p_nodes: if (s_p_node, t_p_node) in self.p.edges(): new_attrs = attrs_union( new_attrs, dict_sub( self.rhs.edge[s][t], self.p.edge[s_p_node][t_p_node] ) ) return attrs
def removed_edge_attrs(self): """Get edge attributes removed by the rule. Returns ------- attrs : dict Dictionary where keys are edges from `lhs` and values are attribute dictionaries to remove. """ attrs = dict() for s, t in self.lhs.edges(): s_p_nodes = keys_by_value(self.p_lhs, s) t_p_nodes = keys_by_value(self.p_lhs, t) new_attrs = {} for s_p_node in s_p_nodes: for t_p_node in t_p_nodes: if (s_p_node, t_p_node) in self.p.edges(): new_attrs = attrs_union( new_attrs, dict_sub( self.lhs.edge[s][t], self.p.edge[s_p_node][t_p_node] ) ) if len(new_attrs) > 0: attrs[(s, t)] = new_attrs return attrs
def pushout_from_relation(g1, g2, relation, inplace=False): """Find the pushout from a relation.""" left_dict = left_relation_dict(relation) right_dict = right_relation_dict(relation) if inplace is True: g12 = g1 else: g12 = copy.deepcopy(g1) g1_g12 = id_of(g12.nodes()) g2_g12 = dict() for node in g1.nodes(): if node in left_dict.keys(): for g2_node in left_dict[node]: g2_g12[g2_node] = node for node in g2.nodes(): if node not in right_dict.keys(): node_id = node if node_id in g12.nodes(): node_id = g12.generate_new_node_id(g12, node) g12.add_node(node_id, g2.get_node(node)) g2_g12[node] = node_id elif len(right_dict[node]) == 1: node_attrs_diff = dict_sub(g2.get_node(node), g1.get_node(list(right_dict[node])[0])) g12.add_node_attrs(list(right_dict[node])[0], node_attrs_diff) elif len(right_dict[node]) > 1: new_name = g12.merge_nodes(right_dict[node]) for g1_node in right_dict[node]: g1_g12[g1_node] = new_name g2_g12[node] = new_name node_attrs_diff = dict_sub(g2.get_node(node), g12.get_node(new_name)) g12.add_node_attrs(new_name, node_attrs_diff) for u, v in g2.edges(): if (g2_g12[u], g2_g12[v]) not in g12.edges(): g12.add_edge(g2_g12[u], g2_g12[v], g2.get_edge(u, v)) else: edge_attrs_diff = dict_sub(g2.get_edge(u, v), g12.get_edge(g2_g12[u], g2_g12[v])) g12.add_edge_attrs(g2_g12[u], g2_g12[v], edge_attrs_diff) return (g12, g1_g12, g2_g12)
def pushout_from_relation(g1, g2, relation, inplace=False): """Find the pushout from a relation.""" left_dict = left_relation_dict(relation) right_dict = right_relation_dict(relation) if inplace is True: g12 = g1 else: g12 = copy.deepcopy(g1) g1_g12 = id_of(g12.nodes()) g2_g12 = dict() for node in g1.nodes(): if node in left_dict.keys(): for g2_node in left_dict[node]: g2_g12[g2_node] = node for node in g2.nodes(): if node not in right_dict.keys(): add_node(g12, node, g2.node[node]) g2_g12[node] = node elif len(right_dict[node]) == 1: node_attrs_diff = dict_sub(g2.node[node], g1.node[list(right_dict[node])[0]]) add_node_attrs(g12, list(right_dict[node])[0], node_attrs_diff) elif len(right_dict[node]) > 1: new_name = merge_nodes(g12, right_dict[node]) for g1_node in right_dict[node]: g1_g12[g1_node] = new_name g2_g12[node] = new_name node_attrs_diff = dict_sub(g2.node[node], g12.node[new_name]) add_node_attrs(g12, new_name, node_attrs_diff) for u, v in g2.edges(): if (g2_g12[u], g2_g12[v]) not in g12.edges(): add_edge(g12, g2_g12[u], g2_g12[v], get_edge(g2, u, v)) else: edge_attrs_diff = dict_sub(g2.edge[u][v], g12.edge[g2_g12[u]][g2_g12[v]]) add_edge_attrs(g12, g2_g12[u], g2_g12[v], edge_attrs_diff) return (g12, g1_g12, g2_g12)
def removed_node_attrs(self): """.""" attrs = dict() for node in self.lhs.nodes(): p_nodes = keys_by_value(self.p_lhs, node) new_attrs = {} for p_node in p_nodes: new_attrs = attrs_union(new_attrs, dict_sub( self.lhs.node[node], self.p.node[p_node])) if len(new_attrs) > 0: attrs[node] = new_attrs return attrs
def added_node_attrs(self): """.""" attrs = dict() for node in self.rhs.nodes(): p_nodes = keys_by_value(self.p_rhs, node) # if len(p_nodes) == 0: # attrs[node] = self.rhs.node[node] new_attrs = {} for p_node in p_nodes: new_attrs = attrs_union(new_attrs, dict_sub( self.rhs.node[node], self.p.node[p_node])) if len(new_attrs) > 0: attrs[node] = new_attrs return attrs
def added_edge_attrs(self): """.""" attrs = dict() for s, t in self.rhs.edges(): s_p_nodes = keys_by_value(self.p_rhs, s) t_p_nodes = keys_by_value(self.p_rhs, t) new_attrs = {} for s_p_node in s_p_nodes: for t_p_node in t_p_nodes: if (s_p_node, t_p_node) in self.p.edges(): new_attrs = attrs_union( new_attrs, dict_sub( self.rhs.edge[s][t], self.p.edge[s_p_node][t_p_node] ) ) return attrs
def removed_node_attrs(self): """Get node attributes removed by the rule. Returns ------- attrs : dict Dictionary where keys are nodes from `lhs` and values are attribute dictionaries to remove. """ attrs = dict() for node in self.lhs.nodes(): p_nodes = keys_by_value(self.p_lhs, node) new_attrs = {} for p_node in p_nodes: new_attrs = attrs_union(new_attrs, dict_sub( self.lhs.node[node], self.p.node[p_node])) if len(new_attrs) > 0: attrs[node] = new_attrs return attrs
def removed_edge_attrs(self): """.""" attrs = dict() for s, t in self.lhs.edges(): s_p_nodes = keys_by_value(self.p_lhs, s) t_p_nodes = keys_by_value(self.p_lhs, t) new_attrs = {} for s_p_node in s_p_nodes: for t_p_node in t_p_nodes: if (s_p_node, t_p_node) in self.p.edges(): new_attrs = attrs_union( new_attrs, dict_sub( self.lhs.edge[s][t], self.p.edge[s_p_node][t_p_node] ) ) if len(new_attrs) > 0: attrs[(s, t)] = new_attrs return attrs
def pushout(a, b, c, a_b, a_c, inplace=False): """Find the pushour of the span b <- a -> c.""" def get_classes_to_merge(): pass check_homomorphism(a, b, a_b) check_homomorphism(a, c, a_c) if inplace is True: d = b else: d = NXGraph() d.add_nodes_from(b.nodes(data=True)) d.add_edges_from(b.edges(data=True)) b_d = id_of(b.nodes()) c_d = dict() # Add/merge nodes merged_nodes = dict() for c_n in c.nodes(): a_keys = keys_by_value(a_c, c_n) # Add nodes if len(a_keys) == 0: if c_n not in d.nodes(): new_name = c_n else: new_name = d.generate_new_node_id(c_n) d.add_node(new_name, c.get_node(c_n)) c_d[c_n] = new_name # Keep nodes elif len(a_keys) == 1: c_d[a_c[a_keys[0]]] = b_d[a_b[a_keys[0]]] # Merge nodes else: nodes_to_merge = set() # find the nodes that need to be merged for k in a_keys: nodes_to_merge.add(a_b[k]) # find if exists already some merged node to # which the new node should be merged groups_to_remove = set() new_groups = set() merge_done = False for k in merged_nodes.keys(): if nodes_to_merge.issubset(merged_nodes[k]): merge_done = True else: intersect_with_group = nodes_to_merge.intersection( merged_nodes[k]) if len(intersect_with_group) > 0: new_nodes_to_merge =\ nodes_to_merge.difference(merged_nodes[k]) if len(new_nodes_to_merge) > 0: new_nodes_to_merge.add(k) new_name = d.merge_nodes(new_nodes_to_merge) merged_nodes[new_name] = merged_nodes[k].union( nodes_to_merge) groups_to_remove.add(k) new_groups.add(new_name) if len(groups_to_remove) > 0: new_name = d.merge_nodes(new_groups) merged_nodes[new_name] = set() for g in new_groups: merged_nodes[new_name] = merged_nodes[new_name].union( merged_nodes[g]) for group in groups_to_remove: del merged_nodes[group] elif not merge_done: if len(nodes_to_merge) > 1: new_name = d.merge_nodes(nodes_to_merge) merged_nodes[new_name] = nodes_to_merge else: new_name = list(nodes_to_merge)[0] c_d[c_n] = new_name for node in nodes_to_merge: b_d[node] = new_name for k in c_d.keys(): for vv in keys_by_value(a_c, k): if b_d[a_b[vv]] == new_name: c_d[k] = new_name # Add edges for (n1, n2) in c.edges(): if (c_d[n1], c_d[n2]) not in d.edges(): d.add_edge(c_d[n1], c_d[n2], c.get_edge(n1, n2)) # Add node attrs for c_n in c.nodes(): a_keys = keys_by_value(a_c, c_n) # Add attributes to the nodes which stayed invariant if len(a_keys) == 1: attrs_to_add = dict_sub(c.get_node(c_n), a.get_node(a_keys[0])) d.add_node_attrs(c_d[c_n], attrs_to_add) # Add attributes to the nodes which were merged elif len(a_keys) > 1: merged_attrs = {} for k in a_keys: merged_attrs = merge_attributes(merged_attrs, a.get_node(k)) attrs_to_add = dict_sub(c.get_node(c_n), merged_attrs) d.add_node_attrs(c_d[c_n], attrs_to_add) # Add edge attrs for (n1, n2) in c.edges(): d_n1 = c_d[n1] d_n2 = c_d[n2] attrs_to_add = dict_sub(c.get_edge(n1, n2), d.get_edge(d_n1, d_n2)) d.add_edge_attrs(c_d[n1], c_d[n2], attrs_to_add) return (d, b_d, c_d)
def pullback_complement(a, b, d, a_b, b_d, inplace=False): """Find the final pullback complement from a->b->d. Makes changes to d inplace. """ check_homomorphism(a, b, a_b, total=True) check_homomorphism(b, d, b_d, total=True) if not is_monic(b_d): raise InvalidHomomorphism( "Second homomorphism is not monic, " "cannot find final pullback complement!" ) if inplace is True: c = d else: c = copy.deepcopy(d) a_c = dict() c_d = id_of(c.nodes()) # Remove/clone nodes for b_node in b.nodes(): a_keys = keys_by_value(a_b, b_node) # Remove nodes if len(a_keys) == 0: remove_node(c, b_d[b_node]) del c_d[b_d[b_node]] # Keep nodes elif len(a_keys) == 1: a_c[a_keys[0]] = b_d[b_node] # Clone nodes else: i = 1 for k in a_keys: if i == 1: a_c[k] = b_d[b_node] c_d[b_d[b_node]] = b_d[b_node] else: new_name = clone_node(c, b_d[b_node]) a_c[k] = new_name c_d[new_name] = b_d[b_node] i += 1 # Remove edges for (b_n1, b_n2) in b.edges(): a_keys_1 = keys_by_value(a_b, b_n1) a_keys_2 = keys_by_value(a_b, b_n2) if len(a_keys_1) > 0 and len(a_keys_2) > 0: for k1 in a_keys_1: for k2 in a_keys_2: if d.is_directed(): if (k1, k2) not in a.edges() and\ (a_c[k1], a_c[k2]) in c.edges(): remove_edge(c, a_c[k1], a_c[k2]) else: if (k1, k2) not in a.edges() and\ (k2, k1) not in a.edges(): if (a_c[k1], a_c[k2]) in d.edges() or\ (a_c[k2], a_c[k1]) in d.edges(): remove_edge(c, a_c[k1], a_c[k2]) # Remove node attrs for a_node in a.nodes(): attrs_to_remove = dict_sub( b.node[a_b[a_node]], a.node[a_node] ) remove_node_attrs(c, a_c[a_node], attrs_to_remove) # removed_node_attrs[a_c[a_node]] = attrs_to_remove # Remove edge attrs for (n1, n2) in a.edges(): attrs_to_remove = dict_sub( get_edge(b, a_b[n1], a_b[n2]), get_edge(a, n1, n2) ) remove_edge_attrs(c, a_c[n1], a_c[n2], attrs_to_remove) # removed_edge_attrs[(a_c[n1], a_c[n2])] = attrs_to_remove return (c, a_c, c_d)
def pushout(a, b, c, a_b, a_c, inplace=False): """Find the pushour of the span b <- a -> c.""" check_homomorphism(a, b, a_b) check_homomorphism(a, c, a_c) if inplace is True: d = b else: d = copy.deepcopy(b) b_d = id_of(b.nodes()) c_d = dict() # Add/merge nodes for c_n in c.nodes(): a_keys = keys_by_value(a_c, c_n) # Add nodes if len(a_keys) == 0: add_node(d, c_n, c.node[c_n]) c_d[c_n] = c_n # Keep nodes elif len(a_keys) == 1: c_d[a_c[a_keys[0]]] = a_b[a_keys[0]] # Merge nodes else: nodes_to_merge = [] for k in a_keys: nodes_to_merge.append(a_b[k]) new_name = merge_nodes(d, nodes_to_merge) c_d[c_n] = new_name for node in nodes_to_merge: b_d[node] = new_name # Add edges for (n1, n2) in c.edges(): if b.is_directed(): if (c_d[n1], c_d[n2]) not in d.edges(): add_edge(d, c_d[n1], c_d[n2], get_edge(c, n1, n2)) else: if (c_d[n1], c_d[n2]) not in d.edges() and\ (c_d[n2], c_d[n1]) not in d.edges(): add_edge(d, c_d[n1], c_d[n2], get_edge(c, n1, n2)) # Add node attrs for c_n in c.nodes(): a_keys = keys_by_value(a_c, c_n) # Add attributes to the nodes which stayed invariant if len(a_keys) == 1: attrs_to_add = dict_sub(c.node[c_n], a.node[a_keys[0]]) add_node_attrs(d, c_d[c_n], attrs_to_add) # Add attributes to the nodes which were merged elif len(a_keys) > 1: merged_attrs = {} for k in a_keys: merged_attrs = merge_attributes(merged_attrs, a.node[k]) attrs_to_add = dict_sub(c.node[c_n], merged_attrs) add_node_attrs(d, c_d[c_n], attrs_to_add) # Add edge attrs for (n1, n2) in c.edges(): d_n1 = c_d[n1] d_n2 = c_d[n2] if d.is_directed(): attrs_to_add = dict_sub(get_edge(c, n1, n2), get_edge(d, d_n1, d_n2)) add_edge_attrs(d, c_d[n1], c_d[n2], attrs_to_add) else: attrs_to_add = dict_sub(get_edge(c, n1, n2), get_edge(d, d_n1, d_n2)) add_edge_attrs(d, c_d[n1], c_d[n2], attrs_to_add) return (d, b_d, c_d)
def pushout(a, b, c, a_b, a_c, inplace=False): """Find the pushour of the span b <- a -> c.""" def get_classes_to_merge(): pass check_homomorphism(a, b, a_b) check_homomorphism(a, c, a_c) if inplace is True: d = b else: d = copy.deepcopy(b) b_d = id_of(b.nodes()) c_d = dict() # Add/merge nodes merged_nodes = dict() for c_n in c.nodes(): a_keys = keys_by_value(a_c, c_n) # Add nodes if len(a_keys) == 0: if c_n not in d.nodes(): new_name = c_n else: new_name = unique_node_id(d, c_n) add_node(d, new_name, c.node[c_n]) c_d[c_n] = new_name # Keep nodes elif len(a_keys) == 1: c_d[a_c[a_keys[0]]] = a_b[a_keys[0]] # Merge nodes else: nodes_to_merge = set() # find the nodes that need to be merged for k in a_keys: nodes_to_merge.add(a_b[k]) # find if exists already some merged node to # which the new node should be merged groups_to_remove = set() new_groups = set() merge_done = False for k in merged_nodes.keys(): if nodes_to_merge.issubset(merged_nodes[k]): merge_done = True else: intersect_with_group = nodes_to_merge.intersection( merged_nodes[k]) if len(intersect_with_group) > 0: new_nodes_to_merge =\ nodes_to_merge.difference(merged_nodes[k]) if len(new_nodes_to_merge) > 0: new_nodes_to_merge.add(k) new_name = merge_nodes(d, new_nodes_to_merge) merged_nodes[new_name] = merged_nodes[k].union( nodes_to_merge) groups_to_remove.add(k) new_groups.add(new_name) if len(groups_to_remove) > 0: new_name = merge_nodes(d, new_groups) merged_nodes[new_name] = set() for g in new_groups: merge_nodes[new_name] = merge_nodes[new_name].union( merged_nodes[g]) for group in groups_to_remove: del merged_nodes[group] elif not merge_done: new_name = merge_nodes(d, nodes_to_merge) merged_nodes[new_name] = nodes_to_merge for node in nodes_to_merge: c_d[c_n] = new_name b_d[node] = new_name # Add edges for (n1, n2) in c.edges(): if b.is_directed(): if (c_d[n1], c_d[n2]) not in d.edges(): add_edge( d, c_d[n1], c_d[n2], get_edge(c, n1, n2)) else: if (c_d[n1], c_d[n2]) not in d.edges() and\ (c_d[n2], c_d[n1]) not in d.edges(): add_edge( d, c_d[n1], c_d[n2], get_edge(c, n1, n2) ) # Add node attrs for c_n in c.nodes(): a_keys = keys_by_value(a_c, c_n) # Add attributes to the nodes which stayed invariant if len(a_keys) == 1: attrs_to_add = dict_sub( c.node[c_n], a.node[a_keys[0]] ) add_node_attrs(d, c_d[c_n], attrs_to_add) # Add attributes to the nodes which were merged elif len(a_keys) > 1: merged_attrs = {} for k in a_keys: merged_attrs = merge_attributes( merged_attrs, a.node[k] ) attrs_to_add = dict_sub(c.node[c_n], merged_attrs) add_node_attrs(d, c_d[c_n], attrs_to_add) # Add edge attrs for (n1, n2) in c.edges(): d_n1 = c_d[n1] d_n2 = c_d[n2] if d.is_directed(): attrs_to_add = dict_sub( get_edge(c, n1, n2), get_edge(d, d_n1, d_n2) ) add_edge_attrs( d, c_d[n1], c_d[n2], attrs_to_add ) else: attrs_to_add = dict_sub( get_edge(c, n1, n2), get_edge(d, d_n1, d_n2) ) add_edge_attrs( d, c_d[n1], c_d[n2], attrs_to_add ) return (d, b_d, c_d)
def pullback_complement(a, b, d, a_b, b_d, inplace=False): """Find the final pullback complement from a->b->d. Makes changes to d inplace. """ check_homomorphism(a, b, a_b, total=True) check_homomorphism(b, d, b_d, total=True) if not is_monic(b_d): raise InvalidHomomorphism("Second homomorphism is not monic, " "cannot find final pullback complement!") if inplace is True: c = d else: c = NXGraph() c.add_nodes_from(d.nodes(data=True)) c.add_edges_from(d.edges(data=True)) a_c = dict() c_d = id_of(c.nodes()) # Remove/clone nodes for b_node in b.nodes(): a_keys = keys_by_value(a_b, b_node) # Remove nodes if len(a_keys) == 0: c.remove_node(b_d[b_node]) del c_d[b_d[b_node]] # Keep nodes elif len(a_keys) == 1: a_c[a_keys[0]] = b_d[b_node] # Clone nodes else: i = 1 for k in a_keys: if i == 1: a_c[k] = b_d[b_node] c_d[b_d[b_node]] = b_d[b_node] else: new_name = c.clone_node(b_d[b_node]) a_c[k] = new_name c_d[new_name] = b_d[b_node] i += 1 # Remove edges for (b_n1, b_n2) in b.edges(): a_keys_1 = keys_by_value(a_b, b_n1) a_keys_2 = keys_by_value(a_b, b_n2) if len(a_keys_1) > 0 and len(a_keys_2) > 0: for k1 in a_keys_1: for k2 in a_keys_2: if (k1, k2) not in a.edges() and\ (a_c[k1], a_c[k2]) in c.edges(): c.remove_edge(a_c[k1], a_c[k2]) # Remove node attrs for a_node in a.nodes(): attrs_to_remove = dict_sub(b.get_node(a_b[a_node]), a.get_node(a_node)) c.remove_node_attrs(a_c[a_node], attrs_to_remove) # removed_node_attrs[a_c[a_node]] = attrs_to_remove # Remove edge attrs for (n1, n2) in a.edges(): attrs_to_remove = dict_sub(b.get_edge(a_b[n1], a_b[n2]), a.get_edge(n1, n2)) c.remove_edge_attrs(a_c[n1], a_c[n2], attrs_to_remove) # removed_edge_attrs[(a_c[n1], a_c[n2])] = attrs_to_remove return (c, a_c, c_d)
def pushout(a, b, c, a_b, a_c, inplace=False): """Find the pushour of the span b <- a -> c.""" check_homomorphism(a, b, a_b) check_homomorphism(a, c, a_c) if inplace is True: d = b else: d = copy.deepcopy(b) b_d = id_of(b.nodes()) c_d = dict() # Add/merge nodes for c_n in c.nodes(): a_keys = keys_by_value(a_c, c_n) # Add nodes if len(a_keys) == 0: add_node(d, c_n, c.node[c_n]) c_d[c_n] = c_n # Keep nodes elif len(a_keys) == 1: c_d[a_c[a_keys[0]]] = a_b[a_keys[0]] # Merge nodes else: nodes_to_merge = [] for k in a_keys: nodes_to_merge.append(a_b[k]) new_name = merge_nodes(d, nodes_to_merge) c_d[c_n] = new_name for node in nodes_to_merge: b_d[node] = new_name # Add edges for (n1, n2) in c.edges(): if b.is_directed(): if (c_d[n1], c_d[n2]) not in d.edges(): add_edge( d, c_d[n1], c_d[n2], get_edge(c, n1, n2)) else: if (c_d[n1], c_d[n2]) not in d.edges() and\ (c_d[n2], c_d[n1]) not in d.edges(): add_edge( d, c_d[n1], c_d[n2], get_edge(c, n1, n2) ) # Add node attrs for c_n in c.nodes(): a_keys = keys_by_value(a_c, c_n) # Add attributes to the nodes which stayed invariant if len(a_keys) == 1: attrs_to_add = dict_sub( c.node[c_n], a.node[a_keys[0]] ) add_node_attrs(d, c_d[c_n], attrs_to_add) # Add attributes to the nodes which were merged elif len(a_keys) > 1: merged_attrs = {} for k in a_keys: merged_attrs = merge_attributes( merged_attrs, a.node[k] ) attrs_to_add = dict_sub(c.node[c_n], merged_attrs) add_node_attrs(d, c_d[c_n], attrs_to_add) # Add edge attrs for (n1, n2) in c.edges(): d_n1 = c_d[n1] d_n2 = c_d[n2] if d.is_directed(): attrs_to_add = dict_sub( get_edge(c, n1, n2), get_edge(d, d_n1, d_n2) ) add_edge_attrs( d, c_d[n1], c_d[n2], attrs_to_add ) else: attrs_to_add = dict_sub( get_edge(c, n1, n2), get_edge(d, d_n1, d_n2) ) add_edge_attrs( d, c_d[n1], c_d[n2], attrs_to_add ) return (d, b_d, c_d)
def pushout(a, b, c, a_b, a_c, inplace=False): """Find the pushour of the span b <- a -> c.""" check_homomorphism(a, b, a_b) check_homomorphism(a, c, a_c) if inplace is True: d = b else: d = copy.deepcopy(b) b_d = id_of(b.nodes()) c_d = dict() # Add/merge nodes merged_nodes = dict() for c_n in c.nodes(): a_keys = keys_by_value(a_c, c_n) # Add nodes if len(a_keys) == 0: if c_n not in d.nodes(): new_name = c_n else: new_name = unique_node_id(d, c_n) add_node(d, new_name, c.node[c_n]) c_d[c_n] = new_name # Keep nodes elif len(a_keys) == 1: c_d[a_c[a_keys[0]]] = a_b[a_keys[0]] # Merge nodes else: nodes_to_merge = set() # find the nodes that need to be merged for k in a_keys: nodes_to_merge.add(a_b[k]) # find if exists already some merged node to # which the new node should be merged groups_to_remove = set() new_groups = set() merge_done = False for k in merged_nodes.keys(): if nodes_to_merge.issubset(merged_nodes[k]): merge_done = True else: intersect_with_group = nodes_to_merge.intersection( merged_nodes[k]) if len(intersect_with_group) > 0: new_nodes_to_merge =\ nodes_to_merge.difference(merged_nodes[k]) if len(new_nodes_to_merge) > 0: new_nodes_to_merge.add(k) new_name = merge_nodes(d, new_nodes_to_merge) merged_nodes[new_name] = merged_nodes[k].union( nodes_to_merge) groups_to_remove.add(k) new_groups.add(new_name) if len(groups_to_remove) > 0: new_name = merge_nodes(d, new_groups) merged_nodes[new_name] = set() for g in new_groups: merge_nodes[new_name] = merge_nodes[new_name].union( merged_nodes[g]) for group in groups_to_remove: del merged_nodes[group] elif not merge_done: new_name = merge_nodes(d, nodes_to_merge) merged_nodes[new_name] = nodes_to_merge for node in nodes_to_merge: c_d[c_n] = new_name b_d[node] = new_name # Add edges for (n1, n2) in c.edges(): if b.is_directed(): if (c_d[n1], c_d[n2]) not in d.edges(): add_edge(d, c_d[n1], c_d[n2], get_edge(c, n1, n2)) else: if (c_d[n1], c_d[n2]) not in d.edges() and\ (c_d[n2], c_d[n1]) not in d.edges(): add_edge(d, c_d[n1], c_d[n2], get_edge(c, n1, n2)) # Add node attrs for c_n in c.nodes(): a_keys = keys_by_value(a_c, c_n) # Add attributes to the nodes which stayed invariant if len(a_keys) == 1: attrs_to_add = dict_sub(c.node[c_n], a.node[a_keys[0]]) add_node_attrs(d, c_d[c_n], attrs_to_add) # Add attributes to the nodes which were merged elif len(a_keys) > 1: merged_attrs = {} for k in a_keys: merged_attrs = merge_attributes(merged_attrs, a.node[k]) attrs_to_add = dict_sub(c.node[c_n], merged_attrs) add_node_attrs(d, c_d[c_n], attrs_to_add) # Add edge attrs for (n1, n2) in c.edges(): d_n1 = c_d[n1] d_n2 = c_d[n2] if d.is_directed(): attrs_to_add = dict_sub(get_edge(c, n1, n2), get_edge(d, d_n1, d_n2)) add_edge_attrs(d, c_d[n1], c_d[n2], attrs_to_add) else: attrs_to_add = dict_sub(get_edge(c, n1, n2), get_edge(d, d_n1, d_n2)) add_edge_attrs(d, c_d[n1], c_d[n2], attrs_to_add) return (d, b_d, c_d)