Exemple #1
0
def PlotQuadraticModel(daily, name):
    """
    """
    model, results = RunQuadraticModel(daily)
    regression.SummarizeResults(results)
    timeseries.PlotFittedValues(model, results, label=name)
    thinkplot.Save(root='timeseries11',
                   title='fitted values',
                   xlabel='years',
                   xlim=[-0.1, 3.8],
                   ylabel='price per gram ($)')

    timeseries.PlotResidualPercentiles(model, results)
    thinkplot.Save(root='timeseries12',
                   title='residuals',
                   xlabel='years',
                   ylabel='price per gram ($)')

    years = np.linspace(0, 5, 101)
    thinkplot.Scatter(daily.years, daily.ppg, alpha=0.1, label=name)
    timeseries.PlotPredictions(daily, years, func=RunQuadraticModel)
    thinkplot.Save(root='timeseries13',
                   title='predictions',
                   xlabel='years',
                   xlim=[years[0] - 0.1, years[-1] + 0.1],
                   ylabel='price per gram ($)')
Exemple #2
0
def PlotArrivalDepartureDelayFit(flights):
    """Plots a scatter plot and fitted curve.

    live: DataFrame
    """

    sample = thinkstats2.SampleRows(flights, 1000)
    arrivalDelays = sample.ARRIVAL_DELAY
    departureDelays = sample.DEPARTURE_DELAY
    inter, slope = thinkstats2.LeastSquares(arrivalDelays, departureDelays)
    fit_xs, fit_ys = thinkstats2.FitLine(arrivalDelays, inter, slope)

    thinkplot.Scatter(arrivalDelays, departureDelays, color='gray', alpha=0.1)
    thinkplot.Plot(fit_xs, fit_ys, color='white', linewidth=3)
    thinkplot.Plot(fit_xs, fit_ys, color='blue', linewidth=2)
    thinkplot.Save(
        root='ArrivalDepartureDelayFit_linear1',
        xlabel='arrival delay (min)',
        ylabel='departure delay (min)',
        #                   axis=[10, 45, 0, 15],
        legend=False)

    formula = 'DEPARTURE_DELAY ~ ARRIVAL_DELAY'
    model = smf.ols(formula, data=sample)
    results = model.fit()
    regression.SummarizeResults(results)
def PlotQuadraticModel(daily, name):
    model, results = RunQuadraticModel(daily)
    regression.SummarizeResults(results)
    timeseries.PlotFittedValues(model, results, label=name)
    thinkplot.Save(root='Output_Timeseries1',
                   title='Fitted Val',
                   xlabel='yr',
                   xlim=[-0.2, 4],
                   ylabel='price per gram ($)')

    timeseries.PlotResidualPercentiles(model, results)
    thinkplot.Save(root='Output_Timeseries2',
                   title='Residual',
                   xlabel='yr',
                   ylabel='price per gram ($)')

    years = np.linspace(0, 10, 200)
    thinkplot.Scatter(daily.years, daily.ppg, alpha=0.1, label=name)
    timeseries.PlotPredictions(daily, years, func=RunQuadraticModel)
    thinkplot.Save(root='Output_Timeseries3',
                   title='Predict',
                   xlabel='yr',
                   xlim=[years[0]-0.1, years[-1]+0.1],
                   ylabel='price per gram ($)')