def main ():
    start_time = datetime.datetime.now()
    print('Tiempo inicial', start_time)

    #Iniciar Spark
    sc = init_spark()
    spark = SparkSession(sc)

    # Conexion a sqlite
    c = init_sqlite()

    # Generar una lista con todos los generos y asignarle un numero a cada uno
    genres = load_genres(c)

    # Cargar la data a un dataframe
    data, headers_feature = load_dataset(c, spark, genres)

    # Correr la clasificacion por regresion logistica
    regression.run(data, headers_feature)

    # Correr la clasificacion por redes neuronales
    neural.run(data, headers_feature)

    end_time = datetime.datetime.now()
    print('Tiempo final', end_time)
    print('Tiempo total transcurrido', end_time - start_time)
Exemple #2
0
def predict():
    neighborhood = request.args.get('neighborhood')
    layout = request.args.get('layout')
    bathrooms = request.args.get('bathrooms')
    square_footage = request.args.get('square_footage')

    predicted_price = regression.run([{
        'neighborhood': neighborhood,
        'layout': layout,
        'bathrooms': bathrooms,
        'square_footage': int(square_footage)
    }])

    return jsonify(predicted_price[0][0])
Exemple #3
0
    epochs = args.epochs,
    criterion = criterion,
    batch_size=args.batch_size,
    subspace_type=args.subspace, subspace_kwargs={'max_rank':args.max_num_models},
    momentum = args.momentum, wd=args.wd, lr_init=args.lr_init,
    swag_lr = args.swag_lr, swag_freq = 1, swag_start = args.swag_start,
    use_cuda = torch.cuda.is_available(), use_swag = args.swag,
    scale=args.scale, num_samples=args.num_samples,
    const_lr=args.no_schedule, double_bias_lr=False,
    model_variance=args.model_variance,
    **extra_args,
    input_dim=dataset.D, output_dim=output_dim, apply_var=args.noise_var, **model_cfg.kwargs
)

mname = args.model
if args.swag:
    mname = mname + args.subspace + args.inference

bb_args = argparse.Namespace(model=mname, dataset=args.dataset, split=args.split, seed=args.seed, database_path=args.database_path)

bb_result = run(bb_args, data=dataset, model=regression_model, is_test=args.database_path=='')
print(bb_result)

utils.save_checkpoint(
    args.dir,
    args.epochs,
    model_state_dict=regression_model.model.state_dict(),
    optimizer=regression_model.optimizer.state_dict(),
    result=bb_result
)
Exemple #4
0
                                       })

        result = self.execute_command(
            self.BASE_COMMAND + "ninjadroid /apks/Example.apk --all --json")
        # NOTE: the below hack is needed to remove the SHA1withRSA signature algorithm warning...
        result = "\n".join(result.split('\n')[4:])

        self.assert_json_equal(expected, result)

    @RegressionSuite.test
    def extract_extended(self):
        expected = self.read_plain_text_file(
            "regression/expected/extract.txt",
            overrides={
                18:
                "7ab36f88adf38f96df05c9e024d548ab  output/report-Example.json"
            })

        self.execute_command(
            self.BASE_COMMAND_WITH_OUTPUT +
            "ninjadroid /apks/Example.apk --all --extract /output")
        # NOTE: the .jar file checksum changes at every run...
        result = self.execute_command(
            "find output/ -type f -exec md5sum '{}' + | grep -v Example.jar")

        self.assert_plain_text_equal(expected, result)


if __name__ == "__main__":
    run(suite=DockerRegressionSuite())
Exemple #5
0
        result = self.execute_command(
            "ninjadroid regression/data/Example.apk --json")

        self.assert_json_equal(expected, result)

    @RegressionSuite.test
    def show_json_extended(self):
        expected = self.read_json_file("regression/expected/extended.json")

        result = self.execute_command(
            "ninjadroid regression/data/Example.apk --all --json")

        self.assert_json_equal(expected, result)

    @RegressionSuite.test
    def extract_extended(self):
        expected = self.read_plain_text_file("regression/expected/extract.txt")

        self.execute_command(
            "ninjadroid regression/data/Example.apk --all --extract output/")
        # NOTE: the .jar file checksum changes at every run...
        result = self.execute_command(
            "find output/ -type f -exec md5sum '{}' + | grep -v Example.jar")

        self.assert_plain_text_equal(expected, result)


if __name__ == "__main__":
    run(suite=NativeRegressionSuite())
Exemple #6
0
        self.assert_plain_text_equal(expected, result, multiline=False)

    @RegressionSuite.test
    def show_extended(self):
        expected = self.read_plain_text_file("regression/expected/extended.txt")

        result = self.execute_command(self.BASE_COMMAND + "ninjadroid regression/data/Example.apk --all")

        self.assert_plain_text_equal(expected, result, multiline=False)

    @RegressionSuite.test
    def show_json_summary(self):
        expected = self.read_json_file("regression/expected/summary.json")

        result = self.execute_command(self.BASE_COMMAND + "ninjadroid regression/data/Example.apk --json")

        self.assert_json_equal(expected, result)

    @RegressionSuite.test
    def show_json_extended(self):
        expected = self.read_json_file("regression/expected/extended.json")

        result = self.execute_command(self.BASE_COMMAND + "ninjadroid regression/data/Example.apk --all --json")

        self.assert_json_equal(expected, result)


if __name__ == "__main__":
    run(suite = FlatpakRegressionSuite())
Exemple #7
0
                                           },
                                       })

        result = self.execute_command(
            self.BASE_PATH +
            "ninjadroid regression/data/Example.apk --all --json")

        self.assert_json_equal(expected, result)

    @RegressionSuite.test
    def extract_extended(self):
        expected = self.read_plain_text_file(
            "regression/expected/extract.txt",
            overrides={
                18:
                "25ada2132e42197adfaccd8293c8363a  output/report-Example.json"
            })

        self.execute_command(
            self.BASE_PATH +
            "ninjadroid regression/data/Example.apk --all --extract output/")
        # NOTE: the .jar file checksum changes at every run...
        result = self.execute_command(
            "find output/ -type f -exec md5sum '{}' + | grep -v Example.jar")

        self.assert_plain_text_equal(expected, result)


if __name__ == "__main__":
    run(suite=SnapRegressionSuite())
Exemple #8
0
cfb.PassIntOff.describe() 	# How many interceptions this team has thrown
cfb.FumblesOff.describe() 	# How many fumbles this team has had

cfb.Opponent.describe() 	# Opponent's name
cfb.ScoreDef.describe() 	# Opponent's total score
cfb.RushAttDef.describe() 	# Opponent's rush attempts
cfb.RushYdsDef.describe() 	# Opponent's rush yards
cfb.PassAttDef.describe() 	# Opponent's passing attempts
cfb.PassCompDef.describe()     # Opponent's passing completions
cfb.PassYdsDef.describe() 	# Opponent's total passing yards
cfb.PassIntDef.describe() 	# How many interceptions the opponent has thrown
cfb.FumblesDef.describe() 	# How many fumbles the opponent has had

cfb.Site.describe() 		# Whether the game was home, away, or at a neutral site
cfb.Line.describe() 		# Vegas betting line; Human prediction of score

cfb.ScoreOffCat.describe()     # This teams score broken into categories
cfb.ScoreDefCat.describe()     # Opposing team's score broken into categories


# 5
# Visuals

visuals.run()


# 6
# Machine learning

regression.run()
predictwin.run()
def run_regression():
    reload(reg)
    reg.training_file_name = './data/regression_data.txt'
    reg.groundtruth_file_name = './data/regression_groundtruth.txt'
    reg.run()