import regression
from numpy import *

xArr, yArr = regression.loadDataSet('abalone.txt')
regression.stageWise(xArr, yArr, 0.01, 200)

regression.stageWise(xArr, yArr, 0.001, 5000)

xMat = mat(xArr)
yMat = mat(yArr).T
xMat = regression.regularize(xMat)
yM = mean(yMat, 0)
yMat = yMat - yM
weights = regression.standRegres(xMat, yMat.T)
print(weights.T)
import regression
from numpy import *

xArray, yArray = regression.loadDataSet("./regression/abalone.txt")

# yHat01 = regression.lwlrTest(xArray[100:199], xArray[0:99], yArray[0:99], 0.1)
# yHat1 = regression.lwlrTest(xArray[100:199], xArray[0:99], yArray[0:99], 1)
# yHat10 = regression.lwlrTest(xArray[100:199], xArray[0:99], yArray[0:99], 10)

# print regression.rssError(yArray[100:199], yHat01)
# print regression.rssError(yArray[100:199], yHat1)
# print regression.rssError(yArray[100:199], yHat10)

# wsStand = regression.standRegres(xArray[0:99], yArray[0:99])
# yHat = mat(xArray[100:199]) * wsStand
# print regression.rssError(yArray[100:199], yHat.T.A)

# ridgeWeights = regression.ridgeTest(xArray, yArray)

# import matplotlib.pyplot as plt
# fig = plt.figure()
# ax = fig.add_subplot(111)
# ax.plot(ridgeWeights)
# plt.show()
print regression.stageWise(xArray, yArray, 0.01, 200)
Exemple #3
0
yHat1 = regression.lwlrTest(abX[0:99], abX[0:99], abY[0:99], 1)
yHat10 = regression.lwlrTest(abX[0:99], abX[0:99], abY[0:99], 10)

Err0r01 = regression.rssError(abY[0:99],yHat01.T)
Err0r1 = regression.rssError(abY[0:99],yHat1.T)
Err0r10 = regression.rssError(abY[0:99],yHat10.T)

print('Err0r01 = ',Err0r01)
print('Err0r1 = ',Err0r1)
print('Err0r10 = ',Err0r10)
'''
#------------------------------------------------------

abX, abY = regression.loadDataSet('abalone.txt')
ridgeWeights = regression.ridgeTest(abX, abY)
#StandWeights =regression.standRegres(abX, abY)
import matplotlib.pyplot as plt

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(ridgeWeights)
plt.show()

#------------------------------------------------------
'''
xArr,yArr = regression.loadDataSet('abalone.txt')
#print('xArr = ',xArr)
#print('yArr = ',yArr)
regression.stageWise(xArr,yArr)
'''
Exemple #4
0
# print(regression.lwlr(xArr[0], xArr, yArr, 1.0))
# print(regression.lwlr(xArr[0], xArr, yArr, 0.001))
# 
# yHat = regression.lwlrTest(xArr, xArr, yArr, 0.003)
# xMat = mat(xArr)
# srtInd = xMat[:, 1].argsort(0)
# xSort = xMat[srtInd][:, 0, :]
# 
# import matplotlib.pyplot as plt
# fig = plt.figure()
# ax = fig.add_subplot(111)
# # ax.plot(xSort[:, 1], yHat[srtInd])
# ax.scatter(xMat[:, 1].flatten().A[0], mat(yArr).T.flatten().A[0], s=2, c='red')
# plt.show()


# abX, abY = regression.loadDataSet('../data/abalone.txt')
# ridgeWeights = regression.ridgeTest(abX, abY)
# print(ridgeWeights)
# 
# import matplotlib.pyplot as plt
# fig = plt.figure()
# ax = fig.add_subplot(111)
# ax.plot(ridgeWeights)
# plt.show()



xArr, yArr = regression.loadDataSet('../data/abalone.txt')
regression.stageWise(xArr, yArr, 0.01, 200)
Exemple #5
0
print(regression.lwlr(xArr[0],xArr,yArr,0.001))
'''

#权重图像
#regression.plotWei()     
      
#使用线性回归预测鲍鱼的年龄
#regression.predictAbaAge()

#岭回归
#regression.testRidgeAbaLone()

#逐步前向回归
xArr,yArr=regression.loadDataSet('abalone.txt')
wsArry = regression.stageWise(xArr,yArr,0.005,1000)
print(wsArry)

fig=plt.figure(1)
ax=fig.add_subplot(111)
ax.plot(wsArry)
plt.show()


xMat=mat(xArr)
yMat=mat(yArr).T
#数据标准化
xMat=regression.regularize(xMat)
yMat -= mean(yMat,0)

weights=regression.standRegres(xMat,yMat.T)
# 岭回归
import regression
dm, ls = regression.loadDataSet('abalone.txt')
ridgeWeights = regression.ridgeTest(dm, ls)
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(ridgeWeights)
plt.show()

# 前向逐步回归
import regression
from numpy import *
dm, ls = regression.loadDataSet('abalone.txt')
wMat = regression.stageWise(dm, ls, 0.01, 200)
wMat = regression.stageWise(dm, ls, 0.001, 5000)
xMat = mat(dm)
yMat = mat(ls).T
xMat = (xMat - mean(xMat, 0)) / var(xMat, 0)
yMat = yMat - mean(yMat, 0)
regression.standRegres(xMat, yMat.T).T

import regression
regression.setDataCollect()

import regression
from numpy import *
lgx, lgy = regression.loadLEGOData('out.txt')
# ws = regression.standRegres(lgx,lgy)
# lgx = mat(lgx)
# -*- coding:utf-8 -*-
import regression
from numpy import *

xArr, yArr = regression.loadDataSet("abalone.txt")
#stageWeight = regression.stageWise(xArr, yArr, 0.01, 200)
#print (stageWeight)

stageWeight = regression.stageWise(xArr, yArr, 0.0001, 50000)
#print (stageWeight)
Exemple #8
0
# -*- coding:utf-8 -*-
import regression
from numpy import *

xArr,yArr = regression.loadDataSet("abalone.txt")
#stageWeight = regression.stageWise(xArr, yArr, 0.01, 200)
#print (stageWeight)

stageWeight = regression.stageWise(xArr, yArr, 0.0001, 50000)
#print (stageWeight)
import regression
from numpy import *
import matplotlib.pyplot as plt
abX, abY = regression.loadDataSet('abalone.txt')
regression.stageWise(abX, abY, 0.001, 5000)

ax = fig.add_subplot(111)
ax.plot(ridgeWeights)
plt.show()

xArr, yArr = regression.loadDataSet('abalone.txt')
#regression.stageWise(xArr, yArr, 0.01, 200)
#regression.stageWise(xArr, yArr, 0.001, 5000)

xMat, yMat = mat(xArr), mat(yArr).T
xMat = regression.regularize(xMat)
yM = mean(yMat, 0)
yMat = yMat - yM
weights = regression.standRegres(xMat, yMat.T)
print weights.T

weights = regression.stageWise(xArr, yArr, 0.005, 1000)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(weights)
plt.show()

'''
lgX, lgY = [], []
regression.setDataCollect(lgX, lgY)
print shape(lgX)
lgX1 = mat(ones((58, 5)))
lgX1[:, 1:5] = mat(lgX)
print lgX1[0]
ws = regression.standRegres(lgX1, lgY)
print ws
print lgX1[0] * ws
Exemple #11
0
print(regression.rssError(abY[100:199],yHat01.T))
print(regression.rssError(abY[100:199],yHat1.T))
print(regression.rssError(abY[100:199],yHat10.T))
ws=regression.standRegres(abX[0:99],abY[0:99])
yHat=mat(abX[100:199])*ws
print(regression.rssError(abY[100:199],yHat.T.A))
'''
'''
#---------------------岭回归-----------#
ridgeWeights=regression.ridgeTest(abX,abY)
import matplotlib.pyplot as plt
fig=plt.figure()
ax=fig.add_subplot(111)
ax.plot(ridgeWeights)
plt.show()
'''
#---------------向前逐步回归----------#
stage=regression.stageWise(abX,abY,0.005,1000)
import matplotlib.pyplot as plt
fig=plt.figure()
ax=fig.add_subplot(111)
ax.plot(stage)
plt.show()







# abaloneStageWise.py

import regression
from numpy import *
import matplotlib.pyplot as plt

xArray, yArray = regression.loadDataSet('abalone.txt')

xArray = array(xArray, dtype=float)
yArray = array(yArray, dtype=float)

# regression.stageWise(xArray, yArray, 0.01, 200)

stageWeights = regression.stageWise(xArray, yArray, 0.001, 5000)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(stageWeights)
plt.show()

print(' ---- lwlr output for this dataset : ---- ')

xMat = mat(xArray)
yMat = mat(yArray).T
xMat = regression.regularize(xMat)
yM = mean(yMat, 0)
yMat = yMat - yM
weights = regression.standRegres(xMat, yMat.T)
print('weights.T : ', weights.T)
Exemple #13
0
 def test_stageWise(self):
     xArr, yArr = regression.load_dataset('abalone.txt')
     print regression.stageWise(xArr, yArr, 0.01, 200)
     regression.crossValidation(xArr, yArr, 10)
Exemple #14
0
print corrcoef(yHat.T, yMat)
plt.show()

# 在训练集上预测鲍鱼年龄
featArr, ageArr = regression.loadDataSet('abalone.txt')
# predictionArr01 = regression.lwlrTest(featArr[0:99], featArr[0:99],ageArr[0:99],0.0972)
# predictionArr1 = regression.lwlrTest(featArr[0:99], featArr[0:99],ageArr[0:99],1.0)
# predictionArr10 = regression.lwlrTest(featArr[0:99], featArr[0:99],ageArr[0:99],10)
#
# print regression.ressError(ageArr[0:99], predictionArr01.T)
# print regression.ressError(ageArr[0:99], predictionArr1.T)
# print regression.ressError(ageArr[0:99], predictionArr10.T)
# 在测试集上预测鲍鱼年龄,在测试集上,k=2时效果最好
# predictionArr01 = regression.lwlrTest(featArr[100:199], featArr[0:99],ageArr[0:99],0.0972)
# predictionArr1 = regression.lwlrTest(featArr[100:199], featArr[0:99],ageArr[0:99],1.0)
# predictionArr10 = regression.lwlrTest(featArr[100:199], featArr[0:99],ageArr[0:99],2)
# print regression.ressError(ageArr[100:199], predictionArr01.T)
# print regression.ressError(ageArr[100:199], predictionArr1.T)
# print regression.ressError(ageArr[100:199], predictionArr10.T)

# 岭回归 这个有问题,下次看一下
ridgeWeights = regression.ridgeTest(featArr, ageArr)
#
# # 前向逐步回归
stageWise = regression.stageWise(featArr, ageArr, 0.01, 200)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(ridgeWeights)
# ax.plot(stageWise)
# plt.show()
Exemple #15
0
#srtind = b[:,1].argsort(0)
#c = b[srtind]
#
#b = np.mat(b)
#srtind = b[:,1].argsort(0)
#c = b[srtind]
#
abX,abY = regression.loadDataSet('abalone.txt')
#print(regression.stageWise(xArr,yArr,0.01,200))
ridgeweights = regression.ridgeTest(abX,abY)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(ridgeweights)
plt.show()

returnMat = regression.stageWise(abX,abY,0.01,1000)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(returnMat)
plt.show()










ax = fig.add_subplot(111)
ax.plot(ridgeWeights)
plt.show()

xArr, yArr = regression.loadDataSet('abalone.txt')
#regression.stageWise(xArr, yArr, 0.01, 200)
#regression.stageWise(xArr, yArr, 0.001, 5000)

xMat, yMat = mat(xArr), mat(yArr).T
xMat = regression.regularize(xMat)
yM = mean(yMat, 0)
yMat = yMat - yM
weights = regression.standRegres(xMat, yMat.T)
print weights.T

weights = regression.stageWise(xArr, yArr, 0.005, 1000)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(weights)
plt.show()
'''
lgX, lgY = [], []
regression.setDataCollect(lgX, lgY)
print shape(lgX)
lgX1 = mat(ones((58, 5)))
lgX1[:, 1:5] = mat(lgX)
print lgX1[0]
ws = regression.standRegres(lgX1, lgY)
print ws
print lgX1[0] * ws
print lgX1[-1] * ws