Exemple #1
0
def test_ridge_regression():
    stock_d = testdata()
    ti = TechnicalIndicators(stock_d)

    filename = "test_N225_ridge.pickle"
    clffile = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "clf", filename)

    if os.path.exists(clffile):
        os.remove(clffile)

    clf = Regression(filename)
    ti.calc_ret_index()
    ret = ti.stock["ret_index"]
    base = ti.stock_raw["Adj Close"][0]

    train_X, train_y = clf.train(ret, regression_type="Ridge")

    test_y = clf.predict(ret, base)

    expected = 19177.97
    r = round(test_y[0], 2)
    eq_(r, expected)

    if os.path.exists(clffile):
        os.remove(clffile)
Exemple #2
0
def test_ridge_regression():
    stock_d = testdata()
    ti = TechnicalIndicators(stock_d)

    filename = 'test_N225_ridge.pickle'
    clffile = os.path.join(os.path.dirname(os.path.abspath(__file__)), '..',
                           'clf', filename)

    if os.path.exists(clffile):
        os.remove(clffile)

    clf = Regression(filename)
    ti.calc_ret_index()
    ret = ti.stock['ret_index']
    base = ti.stock_raw['Adj Close'][0]

    train_X, train_y = clf.train(ret, regression_type="Ridge")

    test_y = clf.predict(ret, base)

    expected = 19177.97
    r = round(test_y[0], 2)
    eq_(r, expected)

    if os.path.exists(clffile):
        os.remove(clffile)
Exemple #3
0
def predict(xlabel,ylabel,x_val,x,y):
    meanx=np.mean(x)
    stddevx=np.std(x)
    meany=np.mean(y)
    stddevy=np.std(y)
    x=featureNormalize(x)
    y=featureNormalize(y)

    reg = Regression()
    reg.set_learning_rate(0.01)
    reg.set_max_iterations(10000)
    reg.set_l1_penalty(0.1)
    reg.set_l2_penalty(0.1)
    reg.set_tolerance(1e-5)
    theta, cost, it = reg.polynomial_regression(x, y, 5)

    z = np.linspace(-1.9, 2.1, 4/0.01)
    prediction = reg.predict(z)

    x=np.array(x)*stddevx+meanx
    z=np.array(z)*stddevx+meanx
    y=np.array(y)*stddevy+meany
    prediction=np.array(prediction)*stddevy+meany

    x_val=(x_val-meanx)/stddevx
    y_val=reg.predict([x_val])
    x_val=[x_val]
    x_val=np.array(x_val)*stddevx+meanx
    y_val=np.array(y_val)*stddevy+meany

    fig = plt.figure(figsize=(4,4))
    plt.plot(x,y,'.', label='Input data')
    plt.plot(z,prediction,'r-', label='Best fit curve')
    plt.plot(x_val,y_val,'gx',label='Predicted Data')
    plt.legend(loc=4)
    title=xlabel + " vs " + ylabel
    plt.title(title,size=10)
    plt.xticks(size=8)
    plt.yticks(size=8)
    plt.close('all')

    return([y_val,fig])
Exemple #4
0
def main():
    X, y = make_regression(n_samples=100, n_features=1, noise=20)

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4)

    n_samples, n_features = np.shape(X)

    model = Regression(n_iterations=100, learning_rate=0.01)

    model.fit(X_train, y_train)

    # Training error plot
    n = len(model.training_errors)
    training, = plt.plot(range(n), model.training_errors, label="Training Error")
    plt.legend(handles=[training])
    plt.title("Error Plot")
    plt.ylabel('Mean Squared Error')
    plt.xlabel('Iterations')
    plt.show()

    y_pred = model.predict(X_test)
    mse = mean_squared_error(y_test, y_pred)
    print ("Mean squared error: %s" % (mse))

    y_pred_line = model.predict(X)

    # Color map
    cmap = plt.get_cmap('viridis')

    # Plot the results
    m1 = plt.scatter(366 * X_train, y_train, color=cmap(0.9), s=10)
    m2 = plt.scatter(366 * X_test, y_test, color=cmap(0.5), s=10)
    plt.plot(366 * X, y_pred_line, color='black', linewidth=2, label="Prediction")
    plt.suptitle("Base Regression")
    plt.title("MSE: %.2f" % mse, fontsize=10)
    plt.xlabel('Day')
    plt.ylabel('Temperature in Celcius')
    plt.legend((m1, m2), ("Training data", "Test data"), loc='lower right')
    plt.show()
Exemple #5
0
def main():
    #read input data
    my_data = np.genfromtxt('regression_data.txt', dtype=float, delimiter=',')
     
    # create input and output numpy arrays     
    x = my_data[:,0]
    y = my_data[:,1]
     
    # create regression class object
    reg = Regression()
     
    # set learning rate
    reg.set_learning_rate(0.001)
     
    # set maximum iterations
    reg.set_max_iterations(20000)
     
    # set l1 and l2 penalty
    reg.set_l1_penalty(0.1)
    reg.set_l2_penalty(0.1)
     
    # set tolerance
    reg.set_tolerance(1e-5)
     
    # fit a polynomial regression model 
    theta, cost, it = reg.polynomial_regression(x, y, 6)
     
    print "Regression coefficients :" + str(theta)
    print "Minimum cost function: " + str(cost)
    print "Iterations taken: " + str(it)
     
    # predict values for new input
    z = np.linspace(-2, 2, 4/0.01)
    prediction = reg.predict(z)
     
    # plot
    fig = plt.figure()
    plt.plot(x,y,'.', label='Input data')
    plt.plot(z,prediction,'r-', label='Prediction')
    plt.legend(loc=4)
    fig.suptitle('Polynomial Regression Fit')
    plt.xlabel('x (input)')
    plt.ylabel('y (predicted)')
    plt.savefig('fit_values.eps')
    plt.show()
Exemple #6
0
def predict2(x_val,x,y):
    meanx=np.mean(x)
    stddevx=np.std(x)
    meany=np.mean(y)
    stddevy=np.std(y)
    x=featureNormalize(x)
    y=featureNormalize(y)

    reg = Regression()
    reg.set_learning_rate(0.001)
    reg.set_max_iterations(10000)
    reg.set_l1_penalty(0.1)
    reg.set_l2_penalty(0.1)
    reg.set_tolerance(1e-5)
    theta, cost, it = reg.polynomial_regression(x, y, 5)

    x_val=(x_val-meanx)/stddevx
    y_val=reg.predict([x_val])
    y_val=np.array(y_val)*stddevy+meany

    return(y_val)
Exemple #7
0
    def run(self):
        io = FileIO()
        will_update = self.update

        if self.csvfile:
            stock_tse = io.read_from_csv(self.code, self.csvfile)

            msg = "".join([
                "Read data from csv: ", self.code, " Records: ",
                str(len(stock_tse))
            ])
            print(msg)

            if self.update and len(stock_tse) > 0:
                index = pd.date_range(start=stock_tse.index[-1],
                                      periods=2,
                                      freq='B')
                ts = pd.Series(None, index=index)
                next_day = ts.index[1]
                t = next_day.strftime('%Y-%m-%d')
                newdata = io.read_data(self.code, start=t, end=self.end)

                msg = "".join([
                    "Read data from web: ", self.code, " New records: ",
                    str(len(newdata))
                ])
                print(msg)
                if len(newdata) < 1:
                    will_update = False
                else:
                    print(newdata.ix[-1, :])

                stock_tse = stock_tse.combine_first(newdata)
                io.save_data(stock_tse, self.code, 'stock_')
        else:
            stock_tse = io.read_data(self.code, start=self.start, end=self.end)

            msg = "".join([
                "Read data from web: ", self.code, " Records: ",
                str(len(stock_tse))
            ])
            print(msg)

        if stock_tse.empty:
            msg = "".join(["Data empty: ", self.code])
            print(msg)
            return None

        if not self.csvfile:
            io.save_data(stock_tse, self.code, 'stock_')

        try:
            stock_d = stock_tse.asfreq('B').dropna()[self.days:]

            ti = TechnicalIndicators(stock_d)

            ti.calc_sma()
            ti.calc_sma(timeperiod=5)
            ti.calc_sma(timeperiod=25)
            ti.calc_sma(timeperiod=50)
            ti.calc_sma(timeperiod=75)
            ewma = ti.calc_ewma(span=5)
            ewma = ti.calc_ewma(span=25)
            ewma = ti.calc_ewma(span=50)
            ewma = ti.calc_ewma(span=75)
            bbands = ti.calc_bbands()
            sar = ti.calc_sar()
            draw = Draw(self.code, self.fullname)

            ret = ti.calc_ret_index()
            ti.calc_vol(ret['ret_index'])
            rsi = ti.calc_rsi(timeperiod=9)
            rsi = ti.calc_rsi(timeperiod=14)
            mfi = ti.calc_mfi()
            roc = ti.calc_roc(timeperiod=10)
            roc = ti.calc_roc(timeperiod=25)
            roc = ti.calc_roc(timeperiod=50)
            roc = ti.calc_roc(timeperiod=75)
            roc = ti.calc_roc(timeperiod=150)
            ti.calc_cci()
            ultosc = ti.calc_ultosc()
            stoch = ti.calc_stoch()
            ti.calc_stochf()
            ti.calc_macd()
            willr = ti.calc_willr()
            ti.calc_momentum(timeperiod=10)
            ti.calc_momentum(timeperiod=25)
            tr = ti.calc_tr()
            ti.calc_atr()
            ti.calc_natr()
            vr = ti.calc_volume_rate()

            ret_index = ti.stock['ret_index']
            clf = Classifier(self.clffile)
            train_X, train_y = clf.train(ret_index, will_update)
            msg = "".join(["Train Records: ", str(len(train_y))])
            print(msg)
            clf_result = clf.classify(ret_index)[0]
            msg = "".join(["Classified: ", str(clf_result)])
            print(msg)
            ti.stock.ix[-1, 'classified'] = clf_result

            reg = Regression(self.regfile, alpha=1, regression_type="Ridge")
            train_X, train_y = reg.train(ret_index, will_update)
            msg = "".join(["Train Records: ", str(len(train_y))])
            base = ti.stock_raw['Adj Close'][0]
            reg_result = int(reg.predict(ret_index, base)[0])
            msg = "".join(["Predicted: ", str(reg_result)])
            print(msg)
            ti.stock.ix[-1, 'predicted'] = reg_result

            if len(self.reference) > 0:
                ti.calc_rolling_corr(self.reference)
                ref = ti.stock['rolling_corr']
            else:
                ref = []

            io.save_data(io.merge_df(stock_d, ti.stock), self.code, 'ti_')

            draw.plot(stock_d,
                      ewma,
                      bbands,
                      sar,
                      rsi,
                      roc,
                      mfi,
                      ultosc,
                      willr,
                      stoch,
                      tr,
                      vr,
                      clf_result,
                      reg_result,
                      ref,
                      axis=self.axis,
                      complexity=self.complexity)

            return ti

        except (ValueError, KeyError):
            msg = "".join(["Error occured in ", self.code])
            print(msg)
            return None
Exemple #8
0
    def run(self):
        io = FileIO()
        will_update = self.update

        self.logger.info("".join(["Start Analysis: ", self.code]))

        if self.csvfile:
            stock_tse = io.read_from_csv(self.code, self.csvfile)

            self.logger.info("".join([
                "Read data from csv: ", self.code, " Records: ",
                str(len(stock_tse))
            ]))

            if self.update and len(stock_tse) > 0:
                index = pd.date_range(start=stock_tse.index[-1],
                                      periods=2,
                                      freq='B')
                ts = pd.Series(None, index=index)
                next_day = ts.index[1]
                t = next_day.strftime('%Y-%m-%d')
                newdata = io.read_data(self.code, start=t, end=self.end)

                self.logger.info("".join([
                    "Read data from web: ", self.code, " New records: ",
                    str(len(newdata))
                ]))

                if len(newdata) < 1:
                    will_update = False
                else:
                    print(newdata.ix[-1, :])

                stock_tse = stock_tse.combine_first(newdata)
                io.save_data(stock_tse, self.code, 'stock_')
        else:
            stock_tse = io.read_data(self.code, start=self.start, end=self.end)

            self.logger.info("".join([
                "Read data from web: ", self.code, " Records: ",
                str(len(stock_tse))
            ]))

        if stock_tse.empty:

            self.logger.warn("".join(["Data empty: ", self.code]))

            return None

        if not self.csvfile:
            io.save_data(stock_tse, self.code, 'stock_')

        try:
            stock_d = stock_tse.asfreq('B').dropna()[self.minus_days:]

            ti = TechnicalIndicators(stock_d)

            ti.calc_sma()
            ti.calc_sma(timeperiod=5)
            ti.calc_sma(timeperiod=25)
            ti.calc_sma(timeperiod=50)
            ti.calc_sma(timeperiod=75)
            ti.calc_sma(timeperiod=200)
            ewma = ti.calc_ewma(span=5)
            ewma = ti.calc_ewma(span=25)
            ewma = ti.calc_ewma(span=50)
            ewma = ti.calc_ewma(span=75)
            ewma = ti.calc_ewma(span=200)
            bbands = ti.calc_bbands()
            sar = ti.calc_sar()
            draw = Draw(self.code, self.fullname)

            ret = ti.calc_ret_index()
            ti.calc_vol(ret['ret_index'])
            rsi = ti.calc_rsi(timeperiod=9)
            rsi = ti.calc_rsi(timeperiod=14)
            mfi = ti.calc_mfi()
            roc = ti.calc_roc(timeperiod=10)
            roc = ti.calc_roc(timeperiod=25)
            roc = ti.calc_roc(timeperiod=50)
            roc = ti.calc_roc(timeperiod=75)
            roc = ti.calc_roc(timeperiod=150)
            ti.calc_cci()
            ultosc = ti.calc_ultosc()
            stoch = ti.calc_stoch()
            ti.calc_stochf()
            ti.calc_macd()
            willr = ti.calc_willr()
            ti.calc_momentum(timeperiod=10)
            ti.calc_momentum(timeperiod=25)
            tr = ti.calc_tr()
            ti.calc_atr()
            ti.calc_natr()
            vr = ti.calc_volume_rate()

            ret_index = ti.stock['ret_index']
            clf = Classifier(self.clffile)
            train_X, train_y = clf.train(ret_index, will_update)

            self.logger.info("".join(
                ["Classifier Train Records: ",
                 str(len(train_y))]))

            clf_result = clf.classify(ret_index)[0]

            self.logger.info("".join(["Classified: ", str(clf_result)]))

            ti.stock.ix[-1, 'classified'] = clf_result

            reg = Regression(self.regfile, alpha=1, regression_type="Ridge")
            train_X, train_y = reg.train(ret_index, will_update)

            self.logger.info("".join(
                ["Regression Train Records: ",
                 str(len(train_y))]))

            base = ti.stock_raw['Adj Close'][0]
            reg_result = int(reg.predict(ret_index, base)[0])

            self.logger.info("".join(["Predicted: ", str(reg_result)]))

            ti.stock.ix[-1, 'predicted'] = reg_result

            if will_update is True:
                io.save_data(io.merge_df(stock_d, ti.stock), self.code, 'ti_')

            if self.minus_days < -300:
                _prefix = 'long'
            elif self.minus_days >= -60:
                _prefix = 'short'
            else:
                _prefix = 'chart'

            draw.plot(stock_d,
                      _prefix,
                      ewma,
                      bbands,
                      sar,
                      rsi,
                      roc,
                      mfi,
                      ultosc,
                      willr,
                      stoch,
                      tr,
                      vr,
                      clf_result,
                      reg_result,
                      axis=self.axis,
                      complexity=self.complexity)

            self.logger.info("".join(["Finish Analysis: ", self.code]))

            return ti

        except (ValueError, KeyError) as e:
            self.logger.error("".join(
                ["Error occured in ", self.code, " at analysis.py"]))
            self.logger.error("".join(['ErrorType: ', str(type(e))]))
            self.logger.error("".join(['ErrorMessage: ', str(e)]))
            return None
Exemple #9
0
import numpy as np
from featureScaling import featureScale
from regression import Regression

from sklearn.datasets import load_boston

boston = load_boston()

X = boston['data']
y = boston['target']
feature_names = boston['feature_names']

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)

reg = Regression()
reg.gradientDescent(X_train, y_train, None, 0.05)
print('test data: ',y_test[10:15])
print('predicted data: ',reg.predict(X_test[10:15]))

reg.normalEquation(X_train, y_train)
print('test data: ',y_test[10:15])
print('predicted data: ',reg.predict(X_test[10:15]))
                    #t = regression.predict(array([[cpu_percentage,cpu_time,m_available,m_swap,net_traffic,
                    #                       transmission_capture,transmission_observer]], dtype=float))

                    #t = regression.predict(array([[cpu_percentage,cpu_time,m_available,m_swap,frame_rate]], dtype=float))
                    #print(t)
                    poolSplit = str(data.split(',')[-1]).split(']')[0]
                    pool = poolSplit.split()[0]
                    #print(pool)
                    features = array([[
                        cpu_percentage, cpu_time, m_available, m_swap,
                        frame_rate
                    ]],
                                     dtype=float)
                    t = model_ufmg.predict(
                        features
                    ) if pool == "\'UFMG\'" else model_ufrgs.predict(features)
                    #print(t)
                    pools[pool] = t
                    #pools[poolSplit]
                    print(pools)

                    #migrate(pools, args.x/args.fps)
                    # Add output channel for response
                    #print(regression.predict([[1.7,2014202.7,3940237312,89915392,0.0001804828643798828,1547732123.2172844,1547732122.9963086

                    if s not in outputs:
                        outputs.append(s)

                else:
                    # Interpret empty result as closed connection
Exemple #11
0
    cols_list.append(cols)
data.scale_data(cols_list[:-1])

cols_list = data.get_cols()
y_column_name = input("enter y column name: ")
X_train, X_test, y_train, y_test = data.spilt_data(y_column_name)

model_type = input("Enter R for Regression and C for Classification: ")

if model_type == "C":
    print("Your options are: " + str(Classifier_list))  #add mode list
    modelname = input("Enter model to be used: ")
    classifier = Classification(X_train, X_test, y_train, y_test, modelname)
    classifier.predict()
    classifier.accuracy()
    classifier.save_model()

elif model_type == 'R':
    print("Your options are: " + str(Regressor_list))  #add mode list
    modelname = input("Enter model to be used, use A for all")
    if modelname == "A":
        for modelname in Regressor_list:
            regressor = Regression(X_train, X_test, y_train, y_test, modelname)
            regressor.predict()
            regressor.accuracy()
            regressor.save_model()
    else:
        regressor = Regression(X_train, X_test, y_train, y_test, modelname)
        regressor.predict()
        regressor.accuracy()
        regressor.save_model()
Exemple #12
0
    def run(self):
        io = FileIO()
        will_update = self.update

        if self.csvfile:
            stock_tse = io.read_from_csv(self.code, self.csvfile)

            msg = "".join(["Read data from csv: ", self.code, " Records: ", str(len(stock_tse))])
            print(msg)

            if self.update and len(stock_tse) > 0:
                index = pd.date_range(start=stock_tse.index[-1], periods=2, freq="B")
                ts = pd.Series(None, index=index)
                next_day = ts.index[1]
                t = next_day.strftime("%Y-%m-%d")
                newdata = io.read_data(self.code, start=t, end=self.end)

                msg = "".join(["Read data from web: ", self.code, " New records: ", str(len(newdata))])
                print(msg)
                if len(newdata) < 1:
                    will_update = False
                else:
                    print(newdata.ix[-1, :])

                stock_tse = stock_tse.combine_first(newdata)
                io.save_data(stock_tse, self.code, "stock_")
        else:
            stock_tse = io.read_data(self.code, start=self.start, end=self.end)

            msg = "".join(["Read data from web: ", self.code, " Records: ", str(len(stock_tse))])
            print(msg)

        if stock_tse.empty:
            msg = "".join(["Data empty: ", self.code])
            print(msg)
            return None

        if not self.csvfile:
            io.save_data(stock_tse, self.code, "stock_")

        try:
            stock_d = stock_tse.asfreq("B").dropna()[self.days :]

            ti = TechnicalIndicators(stock_d)

            ti.calc_sma()
            ti.calc_sma(timeperiod=5)
            ti.calc_sma(timeperiod=25)
            ti.calc_sma(timeperiod=50)
            ti.calc_sma(timeperiod=75)
            ewma = ti.calc_ewma(span=5)
            ewma = ti.calc_ewma(span=25)
            ewma = ti.calc_ewma(span=50)
            ewma = ti.calc_ewma(span=75)
            bbands = ti.calc_bbands()
            sar = ti.calc_sar()
            draw = Draw(self.code, self.name)

            ret = ti.calc_ret_index()
            ti.calc_vol(ret["ret_index"])
            rsi = ti.calc_rsi(timeperiod=9)
            rsi = ti.calc_rsi(timeperiod=14)
            mfi = ti.calc_mfi()
            roc = ti.calc_roc(timeperiod=10)
            roc = ti.calc_roc(timeperiod=25)
            roc = ti.calc_roc(timeperiod=50)
            roc = ti.calc_roc(timeperiod=75)
            roc = ti.calc_roc(timeperiod=150)
            ti.calc_cci()
            ultosc = ti.calc_ultosc()
            stoch = ti.calc_stoch()
            ti.calc_stochf()
            ti.calc_macd()
            willr = ti.calc_willr()
            ti.calc_momentum(timeperiod=10)
            ti.calc_momentum(timeperiod=25)
            tr = ti.calc_tr()
            ti.calc_atr()
            ti.calc_natr()
            vr = ti.calc_volume_rate()

            ret_index = ti.stock["ret_index"]
            clf = Classifier(self.clffile)
            train_X, train_y = clf.train(ret_index, will_update)
            msg = "".join(["Train Records: ", str(len(train_y))])
            print(msg)
            clf_result = clf.classify(ret_index)[0]
            msg = "".join(["Classified: ", str(clf_result)])
            print(msg)
            ti.stock.ix[-1, "classified"] = clf_result

            reg = Regression(self.regfile, alpha=1, regression_type="Ridge")
            train_X, train_y = reg.train(ret_index, will_update)
            msg = "".join(["Train Records: ", str(len(train_y))])
            base = ti.stock_raw["Adj Close"][0]
            reg_result = int(reg.predict(ret_index, base)[0])
            msg = "".join(["Predicted: ", str(reg_result)])
            print(msg)
            ti.stock.ix[-1, "predicted"] = reg_result

            if len(self.reference) > 0:
                ti.calc_rolling_corr(self.reference)
                ref = ti.stock["rolling_corr"]
            else:
                ref = []

            io.save_data(io.merge_df(stock_d, ti.stock), self.code, "ti_")

            draw.plot(
                stock_d,
                ewma,
                bbands,
                sar,
                rsi,
                roc,
                mfi,
                ultosc,
                willr,
                stoch,
                tr,
                vr,
                clf_result,
                reg_result,
                ref,
                axis=self.axis,
                complexity=self.complexity,
            )

            return ti

        except (ValueError, KeyError):
            msg = "".join(["Error occured in ", self.code])
            print(msg)
            return None
data_path = "./hollywood.xls"
data = pd.read_excel(data_path)

x_train = data['X2']
y_train = data['X1']
z_train = data['X3']

# y must be an nX1 array
# x myst be an nXm array where m is the number of different variables for the reggression
# regression() returns an 1Xm+1 array wich are the weights +1 is for the constant
x = panda_to_numpy(data, 'X2', 'X3')
y = data['X1']
model = Regression(y, x)
weights = model.train(epochs=200, a=0.0001, print_loss=True)
prediction = model.predict(8, 15)
print(prediction)

# plot the results
ones = np.ones(len(x_train))
x_normalized = np.linspace(x_train.min(), x_train.max(), len(x_train))
z_normalized = np.linspace(z_train.min(), z_train.max(), len(z_train))
x_pred = np.column_stack((x_normalized, z_normalized, ones))
y_pred = weights @ x_pred.T

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.set_title("Prediction of hollywood movie revenue")
ax.set_zlabel("Revenue")
ax.set_xlabel("Cost of production")
ax.set_ylabel("Cost of marketing")
Exemple #14
0
import matplotlib.animation as animation
from regression import Regression, panda_to_numpy

data_path = "./biocarbonate.xls"
data = pd.read_excel(data_path)

x_train = data['X']
y_train = data['Y']

# y must be an nX1 array
# x myst be an nXm array where m is the number of different variables for the reggression
# regression() returns an 1Xm+1 array wich are the weights +1 is for the constant
x = panda_to_numpy(data, 'X')
y = data['Y']
model = Regression(y, x)
weights = model.train(epochs=200000, a=0.00005, print_loss=False)
prediction = model.predict(8)
print(prediction)

# plot the results
ones = np.ones(len(x_train))
x_pred = np.column_stack((np.linspace(x_train.min(), x_train.max(),
                                      len(x_train)), ones))
y_pred = weights @ x_pred.T

plt.title("Prediction of bicarbonate")
plt.xlabel("ph")
plt.ylabel("biocarbonates ppm")
plt.plot(x_train, y_train, "ro", x_pred, y_pred, "g--")
plt.axis([x_train.min(), x_train.max(), y_train.min(), y_train.max()])
plt.show()
Exemple #15
0
from preProcessor import PreProcessor
import argparse
from regression import Regression
from picDrawer import PicDrawer

if __name__ == '__main__':
    '''
    
        python run -f [filepath] -s [filepath] -c [stock code]
    
    output:
        stock error : implement by regression.score() 
        picture : implement by drawer
    
    '''

    # create pre processor

    data_cleaner = PreProcessor()
    train_feature, train_label, test_feature, test_label = data_cleaner.run()

    reg = Regression()
    reg.fit(train_feature, train_label)
    pred_result = reg.predict(test_feature)

    score = reg.score(test_label, pred_result)

    drawer = PicDrawer()
    drawer.run()