c='k',
                       marker='*')

            ax.plot(X, spline_pred, 'r--', label="Spline")
            ax.scatter(spline_max_DoYs_series,
                       spline_max_series,
                       s=100,
                       c='r',
                       marker='*')

            ################################################
            #
            #    bare soil indices plots
            #

            an_EE_TS_BSI = rc.initial_clean(df=curr_field,
                                            column_to_be_cleaned='BSI')
            # an_EE_TS_NDWI = rc.initial_clean(df = curr_field, column_to_be_cleaned='NDWI')
            an_EE_TS_PSRI = rc.initial_clean(df=curr_field,
                                             column_to_be_cleaned='PSRI')
            an_EE_TS_LSWI = rc.initial_clean(df=curr_field,
                                             column_to_be_cleaned='LSWI')

            ax.plot(an_EE_TS_BSI['doy'], an_EE_TS_BSI['BSI'], label="BSI")
            # ax.plot(x_NDWI, y_NDWI, label="NWDI")

            ax.plot(an_EE_TS_PSRI['doy'], an_EE_TS_PSRI['PSRI'], label="PSRI")
            ax.plot(an_EE_TS_LSWI['doy'], an_EE_TS_LSWI['LSWI'], label="LSWI")

            ################################################

            ax.legend(loc="best")
Exemple #2
0
###                   process data
###
########################################################################################

f_name = "00_noOutlier_" + county + "_SF_" + str(
    SF_year) + "_" + indeks + ".csv"
an_EE_TS = pd.read_csv(data_dir + f_name, low_memory=False)

########################################################################################

output_dir = data_base + "/01_jumps_removed/"
os.makedirs(output_dir, exist_ok=True)

########################################################################################

an_EE_TS = rc.initial_clean(df=an_EE_TS, column_to_be_cleaned=indeks)
an_EE_TS.head(2)

###
### List of unique polygons
###
polygon_list = an_EE_TS['ID'].unique()
print(len(polygon_list))

########################################################################################
###
###  initialize output data.
###

output_df = pd.DataFrame(data=None,
                         index=np.arange(an_EE_TS.shape[0]),
Exemple #3
0
print(an_EE_TS.county.unique())
an_EE_TS = an_EE_TS[an_EE_TS['county'] == "Grant"]
print(an_EE_TS.county.unique())

#
# The following columns do not exist in the old data
#
if not ('DataSrc' in a_df.columns):
    print("Data source is being set to NA")
    a_df['DataSrc'] = "NA"

if not ('CovrCrp' in a_df.columns):
    print("Data source is being set to NA")
    a_df['CovrCrp'] = "NA"

an_EE_TS_NDVI = rc.initial_clean(df=an_EE_TS, column_to_be_cleaned='NDVI')
an_EE_TS_EVI = rc.initial_clean(df=an_EE_TS, column_to_be_cleaned='EVI')

an_EE_TS_BSI = rc.initial_clean(df=an_EE_TS, column_to_be_cleaned='BSI')
an_EE_TS_NDWI = rc.initial_clean(df=an_EE_TS, column_to_be_cleaned='NDWI')
an_EE_TS_PSRI = rc.initial_clean(df=an_EE_TS, column_to_be_cleaned='PSRI')
an_EE_TS_LSWI = rc.initial_clean(df=an_EE_TS, column_to_be_cleaned='LSWI')

an_EE_TS_NDVI.head(2)

### List of unique polygons
polygon_list = an_EE_TS_NDVI['geo'].unique()
print(len(polygon_list))

counter = 0
for a_poly in polygon_list:
# if (filter_lastSurDate == True):
#     a_df = rc.filter_out_NASS(dt_df_NASS = a_df)
#     print ("After filtering out NASS, a_df is of dimension {fileShape}.".format(fileShape=a_df.shape))
######################


# a_df['year'] = SF_year
#
# The following columns do not exist in the old data
#
if not('DataSrc' in a_df.columns):
    print ("_________________________________________________________")
    print ("Data source is being set to NA")
    a_df['DataSrc'] = "NA"

a_df = rc.initial_clean(df = a_df, column_to_be_cleaned = indeks)
a_df = a_df.copy()

### List of unique polygons
polygon_list = a_df['ID'].unique()

print ("_________________________________________________________")
print("polygon_list is of length {}.".format(len(polygon_list)))

# 
# 25 columns
#
SEOS_output_columns = ['ID', 'Acres', 'county', 'CropGrp', 'CropTyp', 'DataSrc', 'ExctAcr',
                       'IntlSrD', 'Irrigtn', 'LstSrvD', 'Notes', 'RtCrpTy', 'Shap_Ar',
                       'Shp_Lng', 'TRS', 'image_year', 'SF_year', 'doy', 'EVI',
                       'human_system_start_time', 'Date', 
os.makedirs(output_dir, exist_ok=True)
os.makedirs(plot_dir_base, exist_ok=True)

######################

# The following columns do not exist in the old data
#

if not ('CovrCrp' in a_df.columns):
    print("Data source is being set to NA")
    a_df['CovrCrp'] = "NA"

####################################################################################

an_EE_TS_NDVI = rc.initial_clean(df=a_df, column_to_be_cleaned='NDVI')
an_EE_TS_EVI = rc.initial_clean(df=a_df, column_to_be_cleaned='EVI')
an_EE_TS_BSI = rc.initial_clean(df=a_df, column_to_be_cleaned='BSI')
an_EE_TS_NDWI = rc.initial_clean(df=a_df, column_to_be_cleaned='NDWI')
an_EE_TS_PSRI = rc.initial_clean(df=a_df, column_to_be_cleaned='PSRI')
an_EE_TS_LSWI = rc.initial_clean(df=a_df, column_to_be_cleaned='LSWI')

an_EE_TS_NDVI = rc.add_human_start_time(an_EE_TS_NDVI)
an_EE_TS_EVI = rc.add_human_start_time(an_EE_TS_EVI)
an_EE_TS_BSI = rc.add_human_start_time(an_EE_TS_BSI)
an_EE_TS_NDWI = rc.add_human_start_time(an_EE_TS_NDWI)
an_EE_TS_PSRI = rc.add_human_start_time(an_EE_TS_PSRI)
an_EE_TS_LSWI = rc.add_human_start_time(an_EE_TS_LSWI)

####################################################################################