Exemple #1
0
def original_raven(modifiable_attr, answer_AoT, rule_groups, context):
    candidates = [answer_AoT]
    answers_imgs = [render_panel(answer_AoT)]

    answer_score, _ = solve(rule_groups, context, [answer_AoT])
    assert answer_score > 0

    """Create the negative choices for the original RAVEN dataset"""
    while len(candidates) < 8:
        component_idx, attr_name, min_level, max_level = sample_attr(modifiable_attr)
        new_answer = copy.deepcopy(answer_AoT)
        new_answer.sample_new(component_idx, attr_name, min_level, max_level, answer_AoT)

        new_answer_img = render_panel(new_answer)
        ok = True
        new_answer_score, _ = solve(rule_groups, context, [new_answer])
        if new_answer_score >= answer_score:
            print 'Warning - Accidentally generated good answer - resampling'
            ok = False
        for i in range(0, len(answers_imgs)):
            if (new_answer_img == answers_imgs[i]).all():
                print 'Warning - New answer equals existing image - resampling'
                ok = False

        if ok:
            candidates.append(new_answer)
            answers_imgs.append(new_answer_img)

    return candidates, answers_imgs
Exemple #2
0
def fuse(args, all_configs):
    random.seed(args.seed)
    np.random.seed(args.seed)

    acc = 0
    for k in trange(args.num_samples * len(all_configs)):
        if k < args.num_samples * (1 - args.val - args.test):
            set_name = "train"
        elif k < args.num_samples * (1 - args.test):
            set_name = "val"
        else:
            set_name = "test"

        tree_name = random.choice(all_configs.keys())
        root = all_configs[tree_name]
        while True:
            rule_groups = sample_rules()
            new_root = root.prune(rule_groups)
            if new_root is not None:
                break

        start_node = new_root.sample()

        row_1_1 = copy.deepcopy(start_node)
        for l in range(len(rule_groups)):
            rule_group = rule_groups[l]
            rule_num_pos = rule_group[0]
            row_1_2 = rule_num_pos.apply_rule(row_1_1)
            row_1_3 = rule_num_pos.apply_rule(row_1_2)
            for i in range(1, len(rule_group)):
                rule = rule_group[i]
                row_1_2 = rule.apply_rule(row_1_1, row_1_2)
            for i in range(1, len(rule_group)):
                rule = rule_group[i]
                row_1_3 = rule.apply_rule(row_1_2, row_1_3)
            if l == 0:
                to_merge = [row_1_1, row_1_2, row_1_3]
            else:
                merge_component(to_merge[1], row_1_2, l)
                merge_component(to_merge[2], row_1_3, l)
        row_1_1, row_1_2, row_1_3 = to_merge

        row_2_1 = copy.deepcopy(start_node)
        row_2_1.resample(True)
        for l in range(len(rule_groups)):
            rule_group = rule_groups[l]
            rule_num_pos = rule_group[0]
            row_2_2 = rule_num_pos.apply_rule(row_2_1)
            row_2_3 = rule_num_pos.apply_rule(row_2_2)
            for i in range(1, len(rule_group)):
                rule = rule_group[i]
                row_2_2 = rule.apply_rule(row_2_1, row_2_2)
            for i in range(1, len(rule_group)):
                rule = rule_group[i]
                row_2_3 = rule.apply_rule(row_2_2, row_2_3)
            if l == 0:
                to_merge = [row_2_1, row_2_2, row_2_3]
            else:
                merge_component(to_merge[1], row_2_2, l)
                merge_component(to_merge[2], row_2_3, l)
        row_2_1, row_2_2, row_2_3 = to_merge

        row_3_1 = copy.deepcopy(start_node)
        row_3_1.resample(True)
        for l in range(len(rule_groups)):
            rule_group = rule_groups[l]
            rule_num_pos = rule_group[0]
            row_3_2 = rule_num_pos.apply_rule(row_3_1)
            row_3_3 = rule_num_pos.apply_rule(row_3_2)
            for i in range(1, len(rule_group)):
                rule = rule_group[i]
                row_3_2 = rule.apply_rule(row_3_1, row_3_2)
            for i in range(1, len(rule_group)):
                rule = rule_group[i]
                row_3_3 = rule.apply_rule(row_3_2, row_3_3)
            if l == 0:
                to_merge = [row_3_1, row_3_2, row_3_3]
            else:
                merge_component(to_merge[1], row_3_2, l)
                merge_component(to_merge[2], row_3_3, l)
        row_3_1, row_3_2, row_3_3 = to_merge

        imgs = [
            render_panel(row_1_1),
            render_panel(row_1_2),
            render_panel(row_1_3),
            render_panel(row_2_1),
            render_panel(row_2_2),
            render_panel(row_2_3),
            render_panel(row_3_1),
            render_panel(row_3_2),
            np.zeros((IMAGE_SIZE, IMAGE_SIZE), np.uint8)
        ]
        context = [
            row_1_1, row_1_2, row_1_3, row_2_1, row_2_2, row_2_3, row_3_1,
            row_3_2
        ]

        modifiable_attr = sample_attr_avail(rule_groups, row_3_3)
        answer_AoT = copy.deepcopy(row_3_3)
        candidates = [answer_AoT]
        for j in range(7):
            component_idx, attr_name, min_level, max_level = sample_attr(
                modifiable_attr)
            answer_j = copy.deepcopy(answer_AoT)
            answer_j.sample_new(component_idx, attr_name, min_level, max_level,
                                answer_AoT)
            candidates.append(answer_j)

        random.shuffle(candidates)
        answers = []
        for candidate in candidates:
            answers.append(render_panel(candidate))
        # imsave(generate_matrix_answer(imgs + answers), "./experiments/fuse/{}.jpg".format(k))

        image = imgs[0:8] + answers
        target = candidates.index(answer_AoT)
        predicted = solve(rule_groups, context, candidates)
        meta_matrix, meta_target = serialize_rules(rule_groups)
        structure, meta_structure = serialize_aot(start_node)
        np.savez("{}/RAVEN_{}_{}.npz".format(args.save_dir, k, set_name),
                 image=image,
                 target=target,
                 predict=predicted,
                 meta_matrix=meta_matrix,
                 meta_target=meta_target,
                 structure=structure,
                 meta_structure=meta_structure)
        with open("{}/RAVEN_{}_{}.xml".format(args.save_dir, k, set_name),
                  "w") as f:
            dom = dom_problem(context + candidates, rule_groups)
            f.write(dom)
        if target == predicted:
            acc += 1
    print("Accuracy: {}".format(
        float(acc) / (args.num_samples * len(all_configs))))
Exemple #3
0
def separate(args, all_configs):
    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)

    for key in all_configs.keys():
        if not os.path.exists(os.path.join(args.save_dir, key)):
            os.mkdir(os.path.join(args.save_dir, key))
            
    random.seed(args.seed)
    np.random.seed(args.seed)

    for key in all_configs.keys():
        acc = 0
        for k in tqdm(range(args.num_samples), key):
            count_num = k % 10
            if count_num < (10 - args.val - args.test):
                set_name = "train"
            elif count_num < (10 - args.test):
                set_name = "val"
            else:
                set_name = "test"

            root = all_configs[key]
            while True:
                rule_groups = sample_rules()
                new_root = root.prune(rule_groups)
                if new_root is not None:
                    break
            
            start_node = new_root.sample()

            row_1_1 = copy.deepcopy(start_node)
            for l in range(len(rule_groups)):
                rule_group = rule_groups[l]
                rule_num_pos = rule_group[0]
                row_1_2 = rule_num_pos.apply_rule(row_1_1)
                row_1_3 = rule_num_pos.apply_rule(row_1_2)
                for i in range(1, len(rule_group)):
                    rule = rule_group[i]
                    row_1_2 = rule.apply_rule(row_1_1, row_1_2)
                for i in range(1, len(rule_group)):
                    rule = rule_group[i]
                    row_1_3 = rule.apply_rule(row_1_2, row_1_3)
                if l == 0:
                    to_merge = [row_1_1, row_1_2, row_1_3]
                else:
                    merge_component(to_merge[1], row_1_2, l)
                    merge_component(to_merge[2], row_1_3, l)
            row_1_1, row_1_2, row_1_3 = to_merge

            row_2_1 = copy.deepcopy(start_node)
            row_2_1.resample(True)
            for l in range(len(rule_groups)):
                rule_group = rule_groups[l]
                rule_num_pos = rule_group[0]
                row_2_2 = rule_num_pos.apply_rule(row_2_1)
                row_2_3 = rule_num_pos.apply_rule(row_2_2)
                for i in range(1, len(rule_group)):
                    rule = rule_group[i]
                    row_2_2 = rule.apply_rule(row_2_1, row_2_2)
                for i in range(1, len(rule_group)):
                    rule = rule_group[i]
                    row_2_3 = rule.apply_rule(row_2_2, row_2_3)
                if l == 0:
                    to_merge = [row_2_1, row_2_2, row_2_3]
                else:
                    merge_component(to_merge[1], row_2_2, l)
                    merge_component(to_merge[2], row_2_3, l)
            row_2_1, row_2_2, row_2_3 = to_merge

            row_3_1 = copy.deepcopy(start_node)
            row_3_1.resample(True)
            for l in range(len(rule_groups)):
                rule_group = rule_groups[l]
                rule_num_pos = rule_group[0]
                row_3_2 = rule_num_pos.apply_rule(row_3_1)
                row_3_3 = rule_num_pos.apply_rule(row_3_2)
                for i in range(1, len(rule_group)):
                    rule = rule_group[i]
                    row_3_2 = rule.apply_rule(row_3_1, row_3_2)
                for i in range(1, len(rule_group)):
                    rule = rule_group[i]
                    row_3_3 = rule.apply_rule(row_3_2, row_3_3)
                if l == 0:
                    to_merge = [row_3_1, row_3_2, row_3_3]
                else:
                    merge_component(to_merge[1], row_3_2, l)
                    merge_component(to_merge[2], row_3_3, l)
            row_3_1, row_3_2, row_3_3 = to_merge

            imgs = [render_panel(row_1_1),
                    render_panel(row_1_2),
                    render_panel(row_1_3),
                    render_panel(row_2_1),
                    render_panel(row_2_2),
                    render_panel(row_2_3),
                    render_panel(row_3_1),
                    render_panel(row_3_2),
                    np.zeros((IMAGE_SIZE, IMAGE_SIZE), np.uint8)]
            context = [row_1_1, row_1_2, row_1_3, row_2_1, row_2_2, row_2_3, row_3_1, row_3_2]
            
            answer_AoT = copy.deepcopy(row_3_3)
            modifiable_attr = sample_attr_avail(rule_groups, answer_AoT)

            if not args.fair:
                candidates, answers_imgs = original_raven(modifiable_attr, answer_AoT, rule_groups, context)
            else:
                candidates, answers_imgs = fair_raven(modifiable_attr, answer_AoT, rule_groups, context)

            if args.save:
                zipped = list(zip(candidates, answers_imgs))
                random.shuffle(zipped)
                candidates, answers_imgs = zip(*zipped)

                image = imgs[0:8] + list(answers_imgs)
                target = candidates.index(answer_AoT)
                _, predicted = solve(rule_groups, context, candidates)
                meta_matrix, meta_target = serialize_rules(rule_groups)
                structure, meta_structure = serialize_aot(start_node)
                np.savez_compressed("{}/{}/RAVEN_{}_{}.npz".format(args.save_dir, key, k, set_name), image=image,
                                    target=target,
                                    predict=predicted,
                                    meta_matrix=meta_matrix,
                                    meta_target=meta_target,
                                    structure=structure,
                                    meta_structure=meta_structure)

                with open("{}/{}/RAVEN_{}_{}.xml".format(args.save_dir, key, k, set_name), "w") as f:
                    dom = dom_problem(context + list(candidates), rule_groups)
                    f.write(dom)
Exemple #4
0
def fair_raven(modifiable_attr, answer_AoT, rule_groups, context):
    candidates = [answer_AoT]
    answers_imgs = [render_panel(answer_AoT)]

    answer_score, _ = solve(rule_groups, context, [answer_AoT])
    assert answer_score > 0

    """Create the negative choices for the balanced RAVEN-FAIR dataset"""
    attrs = [modifiable_attr]
    idxs = []
    blacklist = [[]]

    try:
        while len(candidates) < 8:
            while True:
                indices = random.sample(range(len(candidates)), k=len(candidates))
                timeout_flag = False
                for idx in indices:
                    if len(attrs[idx]) > 0:
                        timeout_flag = True
                        break
                if timeout_flag:
                    break
                    print 'No option to continue'
                raise Exception('No option to continue')

            attr_i = attrs[idx]
            candidate_i = candidates[idx]
            blacklist_i = blacklist[idx]

            component_idx, attr_name, min_level, max_level = sample_attr(attr_i)
            try:
                with timeout(5):
                    new_answer = copy.deepcopy(candidate_i)
                    new_answer.sample_new(component_idx, attr_name, min_level, max_level, candidate_i)
                    new_attr = sample_attr_avail(rule_groups, new_answer)
            except Exception as e:
                print 'Attempt to sample failed - recovering'
                print(e)
                print(idxs)
                print(component_idx, attr_name, min_level, max_level)
                for attr in attr_i:
                    print(attr)
                print(blacklist_i)
                continue

            new_blacklist = copy.deepcopy(blacklist_i) + [attr_name]
            for i in reversed(range(len(new_attr))):
                if new_attr[i][1] in new_blacklist:
                    new_attr.pop(i)

            new_answer_img = render_panel(new_answer)
            ok = True
            new_answer_score, _ = solve(rule_groups, context, [new_answer])
            if new_answer_score >= answer_score:
                print 'Warning - Accidentally generated good answer - resampling'
                ok = False
            for i in range(0, len(answers_imgs)):
                if (new_answer_img == answers_imgs[i]).all():
                    print 'Warning - New answer equals existing image - resampling'
                    ok = False
            if ok:
                idxs.append(idx)
                candidates.append(new_answer)
                attrs.append(new_attr)
                blacklist.append(new_blacklist)
                answers_imgs.append(new_answer_img)

    except Exception as e:
        print(e)
        raise e

    return candidates, answers_imgs
Exemple #5
0
def separate(args, all_configs):
    random.seed(args.seed)
    np.random.seed(args.seed)

    for key in all_configs.keys():
        acc = 0
        for k in trange(args.num_samples):
            count_num = k % 10
            if count_num < (10 - args.val - args.test):
                set_name = "train"
            elif count_num < (10 - args.test):
                set_name = "val"
            else:
                set_name = "test"

            root = all_configs[key]
            while True:
                rule_groups = sample_rules()
                new_root = root.prune(rule_groups)    
                if new_root is not None:
                    break
            
            start_node = new_root.sample()

            row_1_1 = copy.deepcopy(start_node)
            for l in range(len(rule_groups)):
                rule_group = rule_groups[l]
                rule_num_pos = rule_group[0]
                row_1_2 = rule_num_pos.apply_rule(row_1_1)
                row_1_3 = rule_num_pos.apply_rule(row_1_2)
                for i in range(1, len(rule_group)):
                    rule = rule_group[i]
                    row_1_2 = rule.apply_rule(row_1_1, row_1_2)
                for i in range(1, len(rule_group)):
                    rule = rule_group[i]
                    row_1_3 = rule.apply_rule(row_1_2, row_1_3)
                if l == 0:
                    to_merge = [row_1_1, row_1_2, row_1_3]
                else:
                    merge_component(to_merge[1], row_1_2, l)
                    merge_component(to_merge[2], row_1_3, l)
            row_1_1, row_1_2, row_1_3 = to_merge

            row_2_1 = copy.deepcopy(start_node)
            row_2_1.resample(True)
            for l in range(len(rule_groups)):
                rule_group = rule_groups[l]
                rule_num_pos = rule_group[0]
                row_2_2 = rule_num_pos.apply_rule(row_2_1)
                row_2_3 = rule_num_pos.apply_rule(row_2_2)
                for i in range(1, len(rule_group)):
                    rule = rule_group[i]
                    row_2_2 = rule.apply_rule(row_2_1, row_2_2)
                for i in range(1, len(rule_group)):
                    rule = rule_group[i]
                    row_2_3 = rule.apply_rule(row_2_2, row_2_3)
                if l == 0:
                    to_merge = [row_2_1, row_2_2, row_2_3]
                else:
                    merge_component(to_merge[1], row_2_2, l)
                    merge_component(to_merge[2], row_2_3, l)
            row_2_1, row_2_2, row_2_3 = to_merge

            row_3_1 = copy.deepcopy(start_node)
            row_3_1.resample(True)
            for l in range(len(rule_groups)):
                rule_group = rule_groups[l]
                rule_num_pos = rule_group[0]
                row_3_2 = rule_num_pos.apply_rule(row_3_1)
                row_3_3 = rule_num_pos.apply_rule(row_3_2)
                for i in range(1, len(rule_group)):
                    rule = rule_group[i]
                    row_3_2 = rule.apply_rule(row_3_1, row_3_2)
                for i in range(1, len(rule_group)):
                    rule = rule_group[i]
                    row_3_3 = rule.apply_rule(row_3_2, row_3_3)
                if l == 0:
                    to_merge = [row_3_1, row_3_2, row_3_3]
                else:
                    merge_component(to_merge[1], row_3_2, l)
                    merge_component(to_merge[2], row_3_3, l)
            row_3_1, row_3_2, row_3_3 = to_merge

            imgs = [render_panel(row_1_1),
                    render_panel(row_1_2),
                    render_panel(row_1_3),
                    render_panel(row_2_1),
                    render_panel(row_2_2),
                    render_panel(row_2_3),
                    render_panel(row_3_1),
                    render_panel(row_3_2),
                    np.zeros((IMAGE_SIZE, IMAGE_SIZE), np.uint8)]
            context = [row_1_1, row_1_2, row_1_3, row_2_1, row_2_2, row_2_3, row_3_1, row_3_2]
            modifiable_attr = sample_attr_avail(rule_groups, row_3_3)
            answer_AoT = copy.deepcopy(row_3_3)
            candidates = [answer_AoT]  

            attr_num = 3
            if attr_num <= len(modifiable_attr):
                idx = np.random.choice(len(modifiable_attr), attr_num, replace=False)   
                selected_attr = [modifiable_attr[i] for i in idx]
            else:
                selected_attr = modifiable_attr

            mode = None
            #switch attribute 'Number' for convenience
            pos = [i for i in range(len(selected_attr)) if selected_attr[i][1]=='Number']
            if pos:
                pos = pos[0]
                selected_attr[pos], selected_attr[-1] = selected_attr[-1], selected_attr[pos] 

                pos = [i for i in range(len(selected_attr)) if selected_attr[i][1]=='Position']
                if pos:
                    mode = 'Position-Number'
            values = [] 
            if len(selected_attr) >= 3:
                mode_3 = None
                if mode == 'Position-Number':
                    mode_3 = '3-Position-Number'  
                for i in range(attr_num):    
                    component_idx, attr_name, min_level, max_level, attr_uni = selected_attr[i][0], selected_attr[i][1], selected_attr[i][3], selected_attr[i][4], selected_attr[i][5]                
                    value = answer_AoT.sample_new_value(component_idx, attr_name, min_level, max_level, attr_uni, mode_3)
                    values.append(value)
                    tmp = []
                    for j in candidates:
                        new_AoT = copy.deepcopy(j)
                        new_AoT.apply_new_value(component_idx, attr_name, value)
                        tmp.append(new_AoT)
                    candidates += tmp   

            elif len(selected_attr) == 2:     
                component_idx, attr_name, min_level, max_level, attr_uni = selected_attr[0][0], selected_attr[0][1], selected_attr[0][3], selected_attr[0][4], selected_attr[0][5]               
                value = answer_AoT.sample_new_value(component_idx, attr_name, min_level, max_level, attr_uni, None)
                values.append(value)
                new_AoT = copy.deepcopy(answer_AoT)
                new_AoT.apply_new_value(component_idx, attr_name, value)
                candidates.append(new_AoT)
                component_idx, attr_name, min_level, max_level, attr_uni = selected_attr[1][0], selected_attr[1][1], selected_attr[1][3], selected_attr[1][4], selected_attr[1][5]
                if mode == 'Position-Number':  
                    ran,qu = 6, 1 
                else:
                    ran,qu = 3, 2   
                for i in range(ran):
                    value = answer_AoT.sample_new_value(component_idx, attr_name, min_level, max_level, attr_uni, None)
                    values.append(value)
                    for j in range(qu):
                        new_AoT = copy.deepcopy(candidates[j])
                        new_AoT.apply_new_value(component_idx, attr_name, value)
                        candidates.append(new_AoT)

            elif len(selected_attr) == 1:
                component_idx, attr_name, min_level, max_level, attr_uni = selected_attr[0][0], selected_attr[0][1], selected_attr[0][3], selected_attr[0][4], selected_attr[0][5]             
                for i in range(7):
                    value = answer_AoT.sample_new_value(component_idx, attr_name, min_level, max_level, attr_uni, None)
                    values.append(value)
                    new_AoT = copy.deepcopy(answer_AoT)
                    new_AoT.apply_new_value(component_idx, attr_name, value)
                    candidates.append(new_AoT) 

            random.shuffle(candidates)
            answers = []
            for candidate in candidates:
                answers.append(render_panel(candidate))

            #imsave(generate_matrix_answer(imgs + answers), "/media/dsg3/hs/RAVEN_image/experiments2/{}/{}.jpg".format(key, k))    
            
            image = imgs[0:8] + answers
            target = candidates.index(answer_AoT)
            predicted = solve(rule_groups, context, candidates)
            meta_matrix, meta_target = serialize_rules(rule_groups)
            structure, meta_structure = serialize_aot(start_node)
            np.savez("{}/{}/RAVEN_{}_{}.npz".format(args.save_dir, key, k, set_name), image=image, 
                                                                                      target=target, 
                                                                                      predict=predicted,
                                                                                      meta_matrix=meta_matrix,
                                                                                      meta_target=meta_target, 
                                                                                      structure=structure,
                                                                                      meta_structure=meta_structure)
            with open("{}/{}/RAVEN_{}_{}.xml".format(args.save_dir, key, k, set_name), "wb") as f:
                dom = dom_problem(context + candidates, rule_groups)
                f.write(dom)
            
            if target == predicted:
                acc += 1
        print("Accuracy of {}: {}".format(key, float(acc) / args.num_samples))