Exemple #1
0
def test_intersite(scheme):

    local_mlist = mol_list.switch_scheme(scheme)

    mpo1 = Mpo.intersite(local_mlist, {0: r"a^\dagger"}, {}, Quantity(1.0))
    mpo2 = Mpo.onsite(local_mlist, r"a^\dagger", mol_idx_set=[0])
    assert mpo1.distance(mpo2) == pytest.approx(0, abs=1e-5)

    mpo3 = Mpo.intersite(local_mlist, {2: r"a^\dagger a"}, {}, Quantity(1.0))
    mpo4 = Mpo.onsite(local_mlist, r"a^\dagger a", mol_idx_set=[2])
    assert mpo3.distance(mpo4) == pytest.approx(0, abs=1e-5)

    mpo5 = Mpo.intersite(local_mlist, {2: r"a^\dagger a"}, {}, Quantity(0.5))
    assert mpo5.add(mpo5).distance(mpo4) == pytest.approx(0, abs=1e-5)

    mpo6 = Mpo.intersite(local_mlist, {
        0: r"a^\dagger",
        2: "a"
    }, {}, Quantity(1.0))
    mpo7 = Mpo.onsite(local_mlist, "a", mol_idx_set=[2])
    assert mpo2.apply(mpo7).distance(mpo6) == pytest.approx(0, abs=1e-5)

    # the tests are based on the similarity between scheme 2 and scheme 3
    # so scheme 3 and scheme 4 will be skipped
    if scheme == 2:
        mpo8 = Mpo(local_mlist)
        # a dirty hack to switch from scheme 2 to scheme 3
        test_mlist = local_mlist.switch_scheme(2)
        test_mlist.scheme = 3
        mpo9 = Mpo(test_mlist)
        mpo10 = Mpo.intersite(test_mlist, {
            0: r"a^\dagger",
            2: "a"
        }, {}, Quantity(local_mlist.j_matrix[0, 2]))
        mpo11 = Mpo.intersite(test_mlist, {
            2: r"a^\dagger",
            0: "a"
        }, {}, Quantity(local_mlist.j_matrix[0, 2]))

        assert mpo11.conj_trans().distance(mpo10) == pytest.approx(0, abs=1e-6)
        assert mpo8.distance(mpo9 + mpo10 + mpo11) == pytest.approx(0,
                                                                    abs=1e-6)

        test_mlist.periodic = True
        mpo12 = Mpo(test_mlist)
        assert mpo12.distance(mpo9 + mpo10 + mpo11) == pytest.approx(0,
                                                                     abs=1e-6)

    ph_mpo1 = Mpo.ph_onsite(local_mlist, "b", 1, 1)
    ph_mpo2 = Mpo.intersite(local_mlist, {}, {(1, 1): "b"})
    assert ph_mpo1.distance(ph_mpo2) == pytest.approx(0, abs=1e-6)
Exemple #2
0
    def init_mps(self):
        mmax = self.optimize_config.procedure[0][0]
        i_mps = Mps.random(self.h_mpo.model, self.nexciton, mmax, 1)
        i_mps.optimize_config = self.optimize_config
        energy, i_mps = gs.optimize_mps(i_mps, self.h_mpo)
        if self.spectratype == "emi":
            operator = "a"
        else:
            operator = r"a^\dagger"
        dipole_mpo = Mpo.onsite(self.model, operator, dipole=True)
        if self.temperature != 0:
            beta = self.temperature.to_beta()
            # print "beta=", beta
            # thermal_mpo = Mpo.exact_propagator(self.model, -beta / 2.0, space=self.space1, shift=self.shift1)
            # ket_mps = thermal_mpo.apply(i_mps)
            # ket_mps.normalize()
            # no test, don't know work or not
            i_mpdm = MpDm.from_mps(i_mps)
            tp = ThermalProp(i_mpdm, self.h_mpo, exact=True, space=self.space1)
            tp.evolve(None, 1, beta / 2j)
            ket_mps = tp.latest_mps
        else:
            ket_mps = i_mps
        a_ket_mps = dipole_mpo.apply(ket_mps, canonicalise=True)
        a_ket_mps.canonical_normalize()

        if self.temperature != 0:
            a_bra_mps = ket_mps.copy()
        else:
            a_bra_mps = a_ket_mps.copy()
        return BraKetPair(a_bra_mps, a_ket_mps)
def test_FT_dynamics_hybrid_TDDMRG_TDH(n_dmrg_phs, scheme):

    mol_list = parameter_PBI.construct_mol(4, n_dmrg_phs, 10 - n_dmrg_phs).switch_scheme(scheme)
    mpdm = MpDm.max_entangled_gs(mol_list)
    tentative_mpo = Mpo(mol_list)
    temperature = Quantity(2000, "K")
    tp = ThermalProp(mpdm, tentative_mpo, exact=True, space="GS")
    tp.evolve(None, 1, temperature.to_beta() / 2j)
    mpdm = (
        Mpo.onsite(mol_list, r"a^\dagger", mol_idx_set={0}).apply(tp.latest_mps).normalize(1.0)
    )
    mpdm.compress_config = CompressConfig(threshold=5e-4)
    offset = mpdm.expectation(tentative_mpo)
    mpo = Mpo(mol_list, offset=Quantity(offset, "a.u."))

    # do the evolution
    # nsteps = 90  # too many steps, may take hours to finish
    nsteps = 40
    dt = 10.0

    occ = [mpdm.e_occupations]
    for i in range(nsteps):
        mpdm = mpdm.evolve(mpo, dt)
        occ.append(mpdm.e_occupations)
    # make it compatible with std data
    occ = np.array(occ[:nsteps]).transpose()

    with open(os.path.join(cur_dir, "FT_occ" + str(n_dmrg_phs) + ".npy"), "rb") as f:
        std = np.load(f)
    assert np.allclose(occ[:, :nsteps], std[:, :nsteps], atol=1e-3, rtol=1e-3)
Exemple #4
0
    def init_b_mps(self):
        # get the right hand site vector b, Ax=b
        # b = -eta * dipole * \psi_0

        # only support Holstine model 0/1 exciton manifold
        if self.spectratype == "abs":
            nexciton = 0
            dipoletype = r"a^\dagger"
        elif self.spectratype == "emi":
            nexciton = 1
            dipoletype = "a"

        # procedure for ground state calculation
        if self.procedure_gs is None:
            self.procedure_gs = \
                [[10, 0.4], [20, 0.2], [30, 0.1], [40, 0], [40, 0]]

        # ground state calculation
        mps = Mps.random(
            self.model, nexciton, self.procedure_gs[0][0], percent=1.0)
        mps.optimize_config = OptimizeConfig(procedure=self.procedure_gs)
        mps.optimize_config.method = "2site"

        energies, mps = gs.optimize_mps(mps, self.h_mpo)
        e0 = min(energies)

        dipole_mpo = \
            Mpo.onsite(
                self.model, dipoletype, dipole=True
            )
        b_mps = dipole_mpo.apply(mps.scale(-self.eta))

        return b_mps, e0
Exemple #5
0
 def create_electron_fc(self, gs_mp):
     center_mol_idx = self.mol_num // 2
     creation_operator = Mpo.onsite(
         self.mol_list, r"a^\dagger", mol_idx_set={center_mol_idx}
     )
     mps = creation_operator.apply(gs_mp)
     return mps
Exemple #6
0
def test_dynamics(dissipation, dt, nsteps):
    tentative_mpo = Mpo(band_limit_mol_list)
    gs_mp = MpDm.max_entangled_gs(band_limit_mol_list)
    # subtract the energy otherwise might cause numeric error because of large offset * dbeta
    energy = Quantity(gs_mp.expectation(tentative_mpo))
    mpo = Mpo(band_limit_mol_list, offset=energy)
    tp = ThermalProp(gs_mp, mpo, exact=True, space="GS")
    tp.evolve(None, 50, low_t.to_beta() / 2j)
    gs_mp = tp.latest_mps
    center_mol_idx = band_limit_mol_list.mol_num // 2
    creation_operator = Mpo.onsite(
        band_limit_mol_list, r"a^\dagger", mol_idx_set={center_mol_idx}
    )
    mpdm = creation_operator.apply(gs_mp)
    mpdm_full = MpDmFull.from_mpdm(mpdm)
    # As more compression is involved higher threshold is necessary
    mpdm_full.compress_config = CompressConfig(threshold=1e-4)
    liouville = SuperLiouville(mpo, dissipation)
    r_square_list = [calc_r_square(mpdm_full.e_occupations)]
    time_series = [0]
    for i in range(nsteps - 1):
        logger.info(mpdm_full)
        mpdm_full = mpdm_full.evolve(liouville, dt)
        r_square_list.append(calc_r_square(mpdm_full.e_occupations))
        time_series.append(time_series[-1] + dt)
    time_series = np.array(time_series)
    if dissipation == 0:
        assert np.allclose(get_analytical_r_square(time_series), r_square_list, rtol=1e-2, atol=1e-3)
    else:
        # not much we can do, just basic sanity check
        assert (np.array(r_square_list)[1:] < get_analytical_r_square(time_series)[1:]).all()
Exemple #7
0
def f(mol_list, run_qutip=True):
    tentative_mpo = Mpo(mol_list)
    init_mps = (Mpo.onsite(mol_list, r"a^\dagger", mol_idx_set={0}) @ Mps.gs(
        mol_list, False)).expand_bond_dimension(hint_mpo=tentative_mpo)
    init_mpdm = MpDm.from_mps(init_mps).expand_bond_dimension(
        hint_mpo=tentative_mpo)
    e = init_mps.expectation(tentative_mpo)
    mpo = Mpo(mol_list, offset=Quantity(e))

    if run_qutip:
        # calculate result in ZT. FT result is exactly the same
        TIME_LIMIT = 10
        QUTIP_STEP = 0.01
        N_POINTS = TIME_LIMIT / QUTIP_STEP + 1
        qutip_time_series = np.linspace(0, TIME_LIMIT, N_POINTS)
        init = qutip.Qobj(init_mps.full_wfn(),
                          [qutip_h.dims[0], [1] * len(qutip_h.dims[0])])
        # the result is not exact and the error scale is approximately 1e-5
        res = qutip.sesolve(qutip_h - e,
                            init,
                            qutip_time_series,
                            e_ops=[c.dag() * c for c in qutip_clist])
        qutip_expectations = np.array(res.expect).T

        return qutip_expectations, QUTIP_STEP, init_mps, init_mpdm, mpo
    else:
        return init_mps, init_mpdm, mpo
Exemple #8
0
 def max_entangled_ex(cls, mol_list, normalize=True):
     """
     T = \\infty maximum entangled EX state
     """
     mps = Mps.gs(mol_list, max_entangled=True)
     # the creation operator \\sum_i a^\\dagger_i
     ex_mps = Mpo.onsite(mol_list, r"a^\dagger").apply(mps)
     if normalize:
         ex_mps.normalize(1.0)
     return cls.from_mps(ex_mps)
Exemple #9
0
def test_bogoliubov():
    # REF: JCP, 2016, 145, 224101
    evolve_config = EvolveConfig(EvolveMethod.tdvp_ps)
    # evolve_config = EvolveConfig()
    omega = 1
    D = 1
    nlevel = 10
    T = Quantity(1)
    ph1 = Phonon.simple_phonon(Quantity(omega), Quantity(D), nlevel)
    mol1 = Mol(Quantity(0), [ph1])
    mlist = MolList([mol1] * 2, Quantity(1), scheme=4)
    mpdm1 = MpDm.max_entangled_gs(mlist)
    mpdm1.evolve_config = evolve_config
    mpo1 = Mpo(mlist)
    tp = ThermalProp(mpdm1, mpo1, exact=True)
    tp.evolve(nsteps=20, evolve_time=T.to_beta() / 2j)
    mpdm2 = tp.latest_mps
    e1 = mpdm2.expectation(mpo1)
    mpdm3 = (Mpo.onsite(mlist, r"a^\dagger", False, {0})
             @ mpdm2).expand_bond_dimension(mpo1)
    es1 = [mpdm3.e_occupations]
    for i in range(40):
        mpdm3 = mpdm3.evolve(mpo1, 0.1)
        es1.append(mpdm3.e_occupations)

    theta = np.arctanh(np.exp(-T.to_beta() * omega / 2))
    ph2 = Phonon.simple_phonon(Quantity(omega), Quantity(D * np.cosh(theta)),
                               nlevel)
    ph3 = Phonon.simple_phonon(Quantity(-omega), Quantity(-D * np.sinh(theta)),
                               nlevel)
    mol2 = Mol(Quantity(0), [ph2, ph3])
    mlist2 = MolList([mol2] * 2, Quantity(1), scheme=4)
    mps1 = Mps.gs(mlist2, False)
    mps1.evolve_config = evolve_config
    mpo2 = Mpo(mlist2)
    e2 = mps1.expectation(mpo2)
    mps2 = (Mpo.onsite(mlist2, r"a^\dagger", False, {0})
            @ mps1).expand_bond_dimension(mpo2)
    es2 = [mps2.e_occupations]
    for i in range(20):
        mps2 = mps2.evolve(mpo2, 0.2)
        es2.append(mps2.e_occupations)
    assert np.allclose(es1[::2], es2, atol=5e-3)
Exemple #10
0
 def init_mps(self):
     if self.spectratype == "emi":
         operator = "a"
     else:
         operator = r"a^\dagger"
     dipole_mpo = Mpo.onsite(self.model, operator, dipole=True)
     a_ket_mps = dipole_mpo.apply(self.get_imps(), canonicalise=True)
     a_ket_mps.canonical_normalize()
     a_ket_mps.evolve_config = self.evolve_config
     a_bra_mps = a_ket_mps.copy()
     return BraKetPair(a_bra_mps, a_ket_mps)
Exemple #11
0
 def init_mps(self):
     beta = self.temperature.to_beta()
     self.h_mpo = Mpo(self.mol_list)
     if self.spectratype == "abs":
         dipole_mpo = Mpo.onsite(self.mol_list, r"a^\dagger", dipole=True)
         i_mpo = MpDm.max_entangled_gs(self.mol_list)
         tp = ThermalProp(i_mpo, self.h_mpo, exact=True, space='GS')
         tp.evolve(None, 1, beta / 2j)
         ket_mpo = tp.latest_mps
     else:
         impo = MpDm.max_entangled_ex(self.mol_list)
         dipole_mpo = Mpo.onsite(self.mol_list, "a", dipole=True)
         if self.job_name is None:
             job_name = None
         else:
             job_name = self.job_name + "_thermal_prop"
         impo.compress_config = self.compress_config
         tp = ThermalProp(impo,
                          self.h_mpo,
                          evolve_config=self.evolve_config,
                          dump_dir=self.dump_dir,
                          job_name=job_name)
         self._defined_output_path = tp._defined_output_path
         if tp._defined_output_path:
             try:
                 logger.info(
                     f"load density matrix from {self._thermal_dump_path}")
                 ket_mpo = MpDm.load(self.mol_list, self._thermal_dump_path)
                 logger.info(f"density matrix loaded: {ket_mpo}")
             except FileNotFoundError:
                 logger.debug(f"no file found in {self._thermal_dump_path}")
                 tp.evolve(None, self.insteps, beta / 2j)
                 ket_mpo = tp.latest_mps
                 ket_mpo.dump(self._thermal_dump_path)
     self.a_ket_mpo = dipole_mpo.apply(ket_mpo, canonicalise=True)
     self.cv_mpo = Mpo.finiteT_cv(self.mol_list,
                                  1,
                                  self.m_max,
                                  self.spectratype,
                                  percent=1.0)
     self.cv_mps = self.cv_mpo
Exemple #12
0
    def max_entangled_ex(cls, model, normalize=True):
        """
        T = \\infty locally maximal entangled EX state
        """
        mps = Mps.ground_state(model, max_entangled=True)
        # the creation operator \\sum_i a^\\dagger_i
        ex_mpo = Mpo.onsite(model, r"a^\dagger")

        ex_mps = ex_mpo @ mps
        if normalize:
            ex_mps.normalize(1.0)
        return cls.from_mps(ex_mps)
def test_displacement():
    def get_e_occu(idx):
        res = np.zeros(len(mol_list))
        res[idx] = 1
        return res
    gs = Mps.gs(mol_list, max_entangled=False)
    gs = Mpo.onsite(mol_list, r"a^\dagger", mol_idx_set={0}).apply(gs).compress()
    assert np.allclose(gs.e_occupations, get_e_occu(0))
    gs = Mpo.displacement(mol_list, 0, 2).apply(gs)
    assert np.allclose(gs.e_occupations, get_e_occu(2))
    gs = Mpo.displacement(mol_list, 2, 0).apply(gs)
    assert np.allclose(gs.e_occupations ,get_e_occu(0))
Exemple #14
0
 def init_mps_abs(self):
     dipole_mpo = Mpo.onsite(self.mol_list, r"a^\dagger", dipole=True)
     i_mpo = MpDm.max_entangled_gs(self.mol_list)
     beta = self.temperature.to_beta()
     tp = ThermalProp(i_mpo, self.h_mpo, exact=True, space="GS")
     tp.evolve(None, 1, beta / 2j)
     ket_mpo = tp.latest_mps
     ket_mpo.evolve_config = self.evolve_config
     a_ket_mpo = dipole_mpo.apply(ket_mpo, canonicalise=True)
     a_ket_mpo.canonical_normalize()
     a_bra_mpo = a_ket_mpo.copy()
     return BraKetPairAbsFiniteT(a_bra_mpo, a_ket_mpo)
Exemple #15
0
    def init_b_mpo(self):
        # get the right hand site vector b, Ax=b
        # b = -eta * dipole * \psi_0

        # only support Holstien model 0/1 exciton manifold
        beta = self.temperature.to_beta()
        if self.spectratype == "abs":
            dipole_mpo = Mpo.onsite(self.model, r"a^\dagger", dipole=True)
            i_mpo = MpDm.max_entangled_gs(self.model)
            tp = ThermalProp(i_mpo, self.h_mpo, exact=True, space='GS')
            tp.evolve(None, 1, beta / 2j)
            ket_mpo = tp.latest_mps
        elif self.spectratype == "emi":
            dipole_mpo = Mpo.onsite(self.model, "a", dipole=True)
            if self._defined_output_path:
                ket_mpo = \
                    load_thermal_state(self.model, self._thermal_dump_path)
            else:
                ket_mpo = None
            if ket_mpo is None:
                impo = MpDm.max_entangled_ex(self.model)
                impo.compress_config = self.compress_config
                if self.job_name is None:
                    job_name = None
                else:
                    job_name = self.job_name + "_thermal_prop"
                tp = ThermalProp(impo,
                                 self.h_mpo,
                                 evolve_config=self.evolve_config,
                                 dump_dir=self.dump_dir,
                                 job_name=job_name)
                tp.evolve(None, self.insteps, beta / 2j)
                ket_mpo = tp.latest_mps
                if self._defined_output_path:
                    ket_mpo.dump(self._thermal_dump_path)
        else:
            assert False
        ket_mpo = dipole_mpo.apply(ket_mpo.scale(-self.eta))

        return ket_mpo, None
Exemple #16
0
def test_save_load():
    mps = Mpo.onsite(parameter.mol_list, "a^\dagger",
                     mol_idx_set={0}).apply(Mps.gs(parameter.mol_list, False))
    mpo = Mpo(parameter.mol_list)
    mps1 = mps.copy()
    for i in range(2):
        mps1 = mps1.evolve(mpo, 10)
    mps2 = mps.evolve(mpo, 10)
    fname = "test.npz"
    mps2.dump(fname)
    mps2 = Mps.load(parameter.mol_list, fname)
    mps2 = mps2.evolve(mpo, 10)
    assert np.allclose(mps1.e_occupations, mps2.e_occupations)
    os.remove(fname)
Exemple #17
0
 def init_mps_emi(self):
     dipole_mpo = Mpo.onsite(self.mol_list, "a", dipole=True)
     i_mpo = MpDm.max_entangled_ex(self.mol_list)
     # only propagate half beta
     tp = ThermalProp(i_mpo, self.h_mpo)
     tp.evolve(None, self.insteps, self.temperature.to_beta() / 2j)
     ket_mpo = tp.latest_mps
     ket_mpo.evolve_config = self.evolve_config
     # e^{\-beta H/2} \Psi
     dipole_mpo_dagger = dipole_mpo.conj_trans()
     dipole_mpo_dagger.build_empty_qn()
     a_ket_mpo = ket_mpo.apply(dipole_mpo_dagger, canonicalise=True)
     a_ket_mpo.canonical_normalize()
     a_bra_mpo = a_ket_mpo.copy()
     return BraKetPairEmiFiniteT(a_bra_mpo, a_ket_mpo)
Exemple #18
0
def test_save_load():
    mol_list = custom_mol_list(hartrees=[True, False])
    mps = Mpo.onsite(mol_list, "a^\dagger", mol_idx_set={0}) @ Mps.gs(
        mol_list, False)
    mpo = Mpo(mol_list)
    mps1 = mps.copy()
    for i in range(2):
        mps1 = mps1.evolve(mpo, 10)
    mps2 = mps.evolve(mpo, 10)
    fname = "test.npz"
    mps2.dump(fname)
    mps2 = Mps.load(mol_list, fname)
    mps2 = mps2.evolve(mpo, 10)
    assert np.allclose(mps1.e_occupations, mps2.e_occupations)
    os.remove(fname)
Exemple #19
0
def test_save_load():
    model = holstein_model
    mps = Mpo.onsite(model, r"a^\dagger", dof_set={0}) @ Mps.ground_state(
        model, False)
    mpo = Mpo(model)
    mps1 = mps.copy()
    for i in range(2):
        mps1 = mps1.evolve(mpo, 10)
    mps2 = mps.evolve(mpo, 10)
    fname = "test.npz"
    mps2.dump(fname)
    mps2 = Mps.load(model, fname)
    mps2 = mps2.evolve(mpo, 10)
    assert np.allclose(mps1.e_occupations, mps2.e_occupations)
    os.remove(fname)
Exemple #20
0
def test_intersite(scheme):

    local_mlist = holstein_model.switch_scheme(scheme)

    mpo1 = Mpo.intersite(local_mlist, {0: r"a^\dagger"}, {}, Quantity(1.0))
    mpo2 = Mpo.onsite(local_mlist, r"a^\dagger", dof_set=[0])
    assert mpo1.distance(mpo2) == pytest.approx(0, abs=1e-5)

    mpo3 = Mpo.intersite(local_mlist, {2: r"a^\dagger a"}, {}, Quantity(1.0))
    mpo4 = Mpo.onsite(local_mlist, r"a^\dagger a", dof_set=[2])
    assert mpo3.distance(mpo4) == pytest.approx(0, abs=1e-5)

    mpo5 = Mpo.intersite(local_mlist, {2: r"a^\dagger a"}, {}, Quantity(0.5))
    assert mpo5.add(mpo5).distance(mpo4) == pytest.approx(0, abs=1e-5)

    mpo6 = Mpo.intersite(local_mlist, {
        0: r"a^\dagger",
        2: "a"
    }, {}, Quantity(1.0))
    mpo7 = Mpo.onsite(local_mlist, "a", dof_set=[2])
    assert mpo2.apply(mpo7).distance(mpo6) == pytest.approx(0, abs=1e-5)

    mpo8 = Mpo.intersite(local_mlist, {
        0: r"a^\dagger",
        2: "a"
    }, {}, Quantity(local_mlist.j_matrix[0, 2]))
    mpo9 = Mpo.intersite(local_mlist, {
        2: r"a^\dagger",
        0: "a"
    }, {}, Quantity(local_mlist.j_matrix[0, 2]))

    assert mpo9.conj_trans().distance(mpo8) == pytest.approx(0, abs=1e-6)

    ph_mpo1 = Mpo.ph_onsite(local_mlist, "b", 1, 1)
    ph_mpo2 = Mpo.intersite(local_mlist, {}, {(1, 1): "b"})
    assert ph_mpo1.distance(ph_mpo2) == pytest.approx(0, abs=1e-6)
Exemple #21
0
    def create_electron_relaxed(self, gs_mp):
        assert np.allclose(gs_mp.bond_dims, np.ones_like(gs_mp.bond_dims))
        center_mol_idx = self.mol_num // 2
        center_mol = self.mol_list[center_mol_idx]
        # start from phonon
        for i, ph in enumerate(center_mol.dmrg_phs):
            idx = self.mol_list.ph_idx(center_mol_idx, i)
            mt = gs_mp[idx][0, ..., 0].array
            evecs = ph.get_displacement_evecs()
            mt = evecs.dot(mt)
            logger.debug(f"relaxed mt: {mt}")
            gs_mp[idx] = mt.reshape([1] + list(mt.shape) + [1])

        creation_operator = Mpo.onsite(
            self.mol_list, r"a^\dagger", mol_idx_set={center_mol_idx}
        )
        mps = creation_operator.apply(gs_mp)
        return mps
def test_mpdm_full(nmols, phonon_freq):
    ph = Phonon.simple_phonon(Quantity(phonon_freq), Quantity(1), 2)
    m = Mol(Quantity(0), [ph])
    mol_list = MolList([m] * nmols, Quantity(1))

    gs_dm = MpDm.max_entangled_gs(mol_list)
    beta = Quantity(1000, "K").to_beta()
    tp = ThermalProp(gs_dm, Mpo(mol_list), exact=True, space="GS")
    tp.evolve(None, 50, beta / 1j)
    gs_dm = tp.latest_mps
    assert np.allclose(gs_dm.e_occupations, [0] * nmols)
    e_gs_dm = Mpo.onsite(mol_list, r"a^\dagger",
                         mol_idx_set={0}).apply(gs_dm, canonicalise=True)
    assert np.allclose(e_gs_dm.e_occupations, [1] + [0] * (nmols - 1))

    mpdm_full = MpDmFull.from_mpdm(e_gs_dm)
    assert np.allclose(mpdm_full.e_occupations, e_gs_dm.e_occupations)
    assert np.allclose(mpdm_full.ph_occupations,
                       e_gs_dm.ph_occupations,
                       rtol=1e-3)
Exemple #23
0
def test_SCF_exact():

    nexciton = 1

    dmrg_mol_list = custom_mol_list(None,
                                    ph_phys_dim,
                                    dis=[Quantity(0), Quantity(0)])
    # DMRG calculation
    procedure = [[40, 0.4], [40, 0.2], [40, 0.1], [40, 0], [40, 0]]
    mps, mpo = construct_mps_mpo_2(dmrg_mol_list, 40, nexciton)
    mps.optimize_config.procedure = procedure
    energy = optimize_mps(mps, mpo)
    dmrg_e = mps.expectation(mpo)

    # print occupation
    dmrg_occ = []
    for i in [0, 1, 2]:
        mpo = Mpo.onsite(dmrg_mol_list,
                         r"a^\dagger a",
                         dipole=False,
                         mol_idx_set={i})
        dmrg_occ.append(mps.expectation(mpo))
    print("dmrg_occ", dmrg_occ)

    hartree_mol_list = custom_mol_list(None,
                                       ph_phys_dim,
                                       dis=[Quantity(0),
                                            Quantity(0)],
                                       hartrees=[True, True])
    WFN, Etot = tdh.SCF(hartree_mol_list, nexciton)
    assert Etot == pytest.approx(dmrg_e)

    fe, fv = 1, 6
    HAM, Etot, A_el = tdh.construct_H_Ham(hartree_mol_list,
                                          nexciton,
                                          WFN,
                                          fe,
                                          fv,
                                          debug=True)
    assert Etot == pytest.approx(dmrg_e)
    assert np.allclose(A_el.flatten(), dmrg_occ, rtol=1e-4)
Exemple #24
0
def test_2site():
    ph = Phonon.simple_phonon(Quantity(1), Quantity(1), 2)
    m = Mol(Quantity(0), [ph])
    mol_list = MolList([m] * 2, Quantity(1), scheme=3)
    gs_mp = Mpo.onsite(mol_list, opera=r"a^\dagger", mol_idx_set={0}).apply(Mps.gs(mol_list, max_entangled=False))
    mpdm = MpDm.from_mps(gs_mp)
    mpdm_full = MpDmFull.from_mpdm(mpdm)
    mpdm_full.compress_config = CompressConfig(threshold=1e-4)
    liouville = SuperLiouville(Mpo(mol_list), dissipation=1)
    ph_occupations_array = []
    energies = []
    for i in range(51):
        logger.info(mpdm_full)
        logger.info(mpdm_full.ph_occupations)
        ph_occupations_array.append(mpdm_full.ph_occupations)
        logger.info(mpdm_full.expectation(liouville))
        energies.append(mpdm_full.expectation(liouville))
        mpdm_full = mpdm_full.evolve(liouville, 0.4)
    ph_occupations_array = np.array(ph_occupations_array)
    assert energies[-1] == pytest.approx(-0.340162, rel=1e-2)
    assert np.allclose(ph_occupations_array[-1], [0.0930588, 0.099115], rtol=1e-2)
Exemple #25
0
    def max_entangled_ex(cls, mol_list, normalize=True):
        """
        T = \\infty locally maximal entangled EX state
        """
        mps = Mps.gs(mol_list, max_entangled=True)
        # the creation operator \\sum_i a^\\dagger_i
        if isinstance(mol_list, MolList):
            ex_mpo = Mpo.onsite(mol_list, r"a^\dagger")
        else:
            model = {}
            for dof in mol_list.e_dofs:
                model[(dof, )] = [(Op("a^\dagger", 1), 1.0)]
            ex_mpo = Mpo.general_mpo(
                mol_list,
                model=model,
                model_translator=ModelTranslator.general_model)

        ex_mps = ex_mpo @ mps
        if normalize:
            ex_mps.normalize(1.0)
        return cls.from_mps(ex_mps)
Exemple #26
0
    def init_oper(self):
        if self.spectratype == "abs":
            self.nexciton = 0
            dipoletype = r"a^\dagger"
        else:
            self.nexciton = 1
            dipoletype = "a"

        dipole_mpo = \
            Mpo.onsite(
                self.mol_list, dipoletype, dipole=True
            )
        mps, self.mpo = \
            construct_mps_mpo_2(
                self.mol_list, self.procedure_gs[0][0], self.nexciton
            )
        # ground state calculation
        mps.optimize_config = OptimizeConfig(procedure=self.procedure_gs)
        mps.optimize_config.method = "2site"
        self.lowest_e = optimize_mps(mps, self.mpo)
        ket_mps = dipole_mpo.apply(mps, canonicalise=True)
        self.b_oper = ket_mps.scale(-self.eta)
def test_zt(n_dmrg_phs, scheme):

    mol_list = parameter_PBI.construct_mol(4, n_dmrg_phs, 10 - n_dmrg_phs).switch_scheme(scheme)
    mps = Mps.gs(mol_list, False)
    # create electron
    mps = Mpo.onsite(mol_list, r"a^\dagger", mol_idx_set={0}).apply(mps).normalize(1.0)
    tentative_mpo = Mpo(mol_list)
    offset = mps.expectation(tentative_mpo)
    mpo = Mpo(mol_list, offset=Quantity(offset, "a.u."))
    # do the evolution
    nsteps = 30
    dt = 30.0

    occ = [mps.e_occupations]
    for i in range(nsteps):
        mps = mps.evolve(mpo, dt)
        occ.append(mps.e_occupations)
    # make it compatible with std data
    occ = np.array(occ[:nsteps]).transpose()

    with open(os.path.join(cur_dir, "ZT_occ" + str(n_dmrg_phs) + ".npy"), "rb") as f:
        std = np.load(f)
    assert np.allclose(occ, std, rtol=1e-2, atol=1e-4)
Exemple #28
0
def test_ft():
    mol = get_mol()
    mol_list = MolList([mol], Quantity(0))
    mpo = Mpo(mol_list)
    impdm = MpDm.max_entangled_gs(mol_list)
    impdm.compress_config = CompressConfig(threshold=1e-6)
    impdm.use_dummy_qn = True
    temperature = Quantity(3)
    evolve_config = EvolveConfig(adaptive=True, guess_dt=-0.001j)
    tp = ThermalProp(impdm, mpo, evolve_config=evolve_config)
    tp.evolve(nsteps=1, evolve_time=temperature.to_beta() / 2j)
    mpdm = tp.latest_mps
    mpdm = Mpo.onsite(mol_list, r"sigma_x").contract(mpdm)
    mpdm.evolve_config = EvolveConfig(adaptive=True, guess_dt=0.1)
    time_series = [0]
    spin = [1 - 2 * mpdm.e_occupations[0]]
    for i in range(30):
        dt = mpdm.evolve_config.guess_dt
        mpdm = mpdm.evolve(mpo, evolve_dt=dt)
        time_series.append(time_series[-1] + dt)
        spin.append(1 - 2 * mpdm.e_occupations[0])
    exact = get_exact_ft(mol, temperature, time_series)
    assert np.allclose(exact, spin, atol=1e-3)
Exemple #29
0
 def init_mps_emi(self):
     dipole_mpo = Mpo.onsite(self.mol_list, "a", dipole=True)
     i_mpo = MpDm.max_entangled_ex(self.mol_list)
     i_mpo.compress_config = self.icompress_config
     if self.job_name is None:
         job_name = None
     else:
         job_name = self.job_name + "_thermal_prop"
     # only propagate half beta
     tp = ThermalProp(i_mpo,
                      self.h_mpo,
                      evolve_config=self.ievolve_config,
                      dump_dir=self.dump_dir,
                      job_name=job_name)
     if tp._defined_output_path:
         try:
             logger.info(
                 f"load density matrix from {self._thermal_dump_path}")
             ket_mpo = MpDm.load(self.mol_list, self._thermal_dump_path)
             logger.info(f"density matrix loaded:{ket_mpo}")
         except FileNotFoundError:
             logger.debug(f"no file found in {self._thermal_dump_path}")
             tp.evolve(None, self.insteps, self.temperature.to_beta() / 2j)
             ket_mpo = tp.latest_mps
             ket_mpo.dump(self._thermal_dump_path)
     else:
         tp.evolve(None, self.insteps, self.temperature.to_beta() / 2j)
         ket_mpo = tp.latest_mps
     ket_mpo.evolve_config = self.evolve_config
     # e^{\-beta H/2} \Psi
     dipole_mpo_dagger = dipole_mpo.conj_trans()
     dipole_mpo_dagger.build_empty_qn()
     a_ket_mpo = ket_mpo.apply(dipole_mpo_dagger, canonicalise=True)
     a_ket_mpo.canonical_normalize()
     a_bra_mpo = a_ket_mpo.copy()
     return BraKetPairEmiFiniteT(a_bra_mpo, a_ket_mpo)
Exemple #30
0
# -*- coding: utf-8 -*-

import numpy as np
import pytest

from renormalizer.mps import Mps, Mpo
from renormalizer.model import MolList2, ModelTranslator
from renormalizer.utils.basis import BasisSHO, BasisMultiElectronVac, BasisMultiElectron, BasisSimpleElectron, Op
from renormalizer.tests import parameter


@pytest.mark.parametrize("mpos", ([
    Mpo.onsite(parameter.mol_list, r"a^\dagger a", mol_idx_set={i})
    for i in range(parameter.mol_list.mol_num)
], [
    Mpo.intersite(parameter.mol_list, {
        i: "a",
        i + 1: r"a^\dagger"
    }, {}) for i in range(parameter.mol_list.mol_num - 1)
], [
    Mpo.intersite(parameter.mol_list, {
        i: "a",
        i + 1: r"a^\dagger"
    }, {}) for i in range(parameter.mol_list.mol_num - 1)
] + [
    Mpo.intersite(parameter.mol_list, {i: "a"}, {})
    for i in range(parameter.mol_list.mol_num - 1)
]))
def test_expectations(mpos):
    random = Mps.random(parameter.mol_list, 1, 20)