def test_neurolab_single_classification(): check_classifier( NeurolabClassifier(layers=[], epochs=N_EPOCHS2, trainf=None), **classifier_params) check_classifier(NeurolabClassifier(layers=[2], epochs=N_EPOCHS2), **classifier_params) check_classifier(NeurolabClassifier(layers=[1, 1], epochs=N_EPOCHS2), **classifier_params)
def test_neurolab_classification_types(): import pandas as pd for net_type in rep.estimators.neurolab.NET_TYPES.keys(): try: clf = NeurolabClassifier(net_type=net_type, epochs=2) ds = pd.DataFrame() ds['feature1'] = [0, 1, 2, 3, 4, 5] ds['feature2'] = [5, 7, 2, 4, 7, 9] ds['y'] = [0, 0, 0, 1, 1, 1] clf.fit(ds[['feature1', 'feature2']] / 10., ds['y']) _ = clf.predict_proba(ds[['feature1', 'feature2']] / 10.) print(net_type, 'is ok') except Exception as e: print(net_type, 'FAILED', e)
def test_neurolab_single_classification(): check_classifier(NeurolabClassifier(show=0, layers=[], epochs=N_EPOCHS2, trainf=nl.train.train_rprop), supports_weight=False, has_staged_pp=False, has_importances=False) check_classifier(NeurolabClassifier(net_type='single-layer', cn='auto', show=0, epochs=N_EPOCHS2, trainf=nl.train.train_delta), supports_weight=False, has_staged_pp=False, has_importances=False)
def test_neurolab_stacking(): base_nlab = NeurolabClassifier(show=0, layers=[], epochs=N_EPOCHS2, trainf=nl.train.train_rprop) check_classifier(SklearnClassifier( clf=BaggingClassifier(base_estimator=base_nlab, n_estimators=3)), supports_weight=False, has_staged_pp=False, has_importances=False)
def test_neurolab_stacking(): base_nlab = NeurolabClassifier(layers=[], epochs=N_EPOCHS2 * 2, trainf=nl.train.train_rprop) base_bagging = BaggingClassifier(base_estimator=base_nlab, n_estimators=3) check_classifier(SklearnClassifier(clf=base_bagging), **classifier_params)
def test_neurolab_multiclassification(): check_classifier(NeurolabClassifier(layers=[10], epochs=N_EPOCHS4, trainf=nl.train.train_rprop), n_classes=4, **classifier_params)
def test_neurolab_reproducibility(): clf = NeurolabClassifier(layers=[4, 5], epochs=2, trainf=nl.train.train_gd) X, y, _ = generate_classification_data() check_classification_reproducibility(clf, X, y)
def test_partial_fit(): clf = NeurolabClassifier(layers=[4, 5], epochs=2, trainf=nl.train.train_gd) X, y, _ = generate_classification_data() clf.fit(X, y) clf.partial_fit(X[:2], y[:2])