def test_gridsearch_metrics_threads(n_threads=3): X, y, sample_weight = generate_classification_data(n_classes=2, distance=0.7) param_grid = OrderedDict({'reg_param': numpy.linspace(0, 1, 20)}) from itertools import cycle optimizers = cycle([ RegressionParameterOptimizer(param_grid=param_grid, n_evaluations=4, start_evaluations=2), SubgridParameterOptimizer(param_grid=param_grid, n_evaluations=4), RandomParameterOptimizer(param_grid=param_grid, n_evaluations=4), ]) for metric in [RocAuc(), OptimalAMS(), OptimalSignificance(), log_loss]: scorer = FoldingScorer(metric) clf = SklearnClassifier(QDA()) grid = GridOptimalSearchCV( estimator=clf, params_generator=next(optimizers), scorer=scorer, parallel_profile='threads-{}'.format(n_threads)) grid.fit(X, y) print(grid.params_generator.best_score_) print(grid.params_generator.best_params_) grid.params_generator.print_results()
def grid_tmva(score_function): grid_param = OrderedDict({"MaxDepth": [4, 5], "NTrees": [10, 20]}) generator = SubgridParameterOptimizer(grid_param) scorer = FoldingScorer(score_function) from rep.estimators import TMVAClassifier grid = GridOptimalSearchCV(TMVAClassifier(features=['column0', 'column1']), generator, scorer) cl = check_grid(grid, False, False, False) assert 1 <= len(cl.features) <= 3 params = cl.get_params() for key in grid_param: assert params[key] == grid.generator.best_params_[key]
def grid_custom(custom): grid_param = OrderedDict({ "n_estimators": [10, 20], "learning_rate": [0.1, 0.05], 'features': [['column0', 'column1'], ['column0', 'column1', 'column2']] }) generator = SubgridParameterOptimizer(grid_param) grid = GridOptimalSearchCV( SklearnClassifier(clf=AdaBoostClassifier(), features=['column0', 'column1']), generator, custom) cl = check_grid(grid, False, False, False) assert 1 <= len(cl.features) <= 3 params = cl.get_params() for key in grid_param: if key in params: assert params[key] == grid.generator.best_params_[key] else: assert params['clf__' + key] == grid.generator.best_params_[key]
def test_gridsearch_on_tmva(): metric = numpy.random.choice([OptimalAMS(), RocAuc()]) scorer = FoldingScorer(metric) grid_param = OrderedDict({"MaxDepth": [4, 5], "NTrees": [10, 20]}) generator = SubgridParameterOptimizer(grid_param) try: from rep.estimators import TMVAClassifier grid = GridOptimalSearchCV( TMVAClassifier(features=['column0', 'column1']), generator, scorer) classifier = check_grid(grid, False, False, False) # checking parameters assert len(classifier.features) == 2 params = classifier.get_params() for key in grid_param: assert params[key] == grid.generator.best_params_[key] except ImportError: pass
def test_grid_with_custom_scorer(): """ Introducing here special scorer which always uses all data passed to gridsearch.fit as training and tests on another fixed dataset (which was passed to scorer) bu computing roc_auc_score from sklearn. """ class CustomScorer(object): def __init__(self, testX, testY): self.testY = testY self.testX = testX def __call__(self, base_estimator, params, X, y, sample_weight=None): cl = clone(base_estimator) cl.set_params(**params) if sample_weight is not None: cl.fit(X, y, sample_weight) else: cl.fit(X, y) return roc_auc_score(self.testY, cl.predict_proba(self.testX)[:, 1]) X, y, _ = generate_classification_data() custom_scorer = CustomScorer(X, y) grid_param = OrderedDict({ "n_estimators": [10, 20], "learning_rate": [0.1, 0.05], 'features': [['column0', 'column1'], ['column0', 'column1', 'column2']] }) generator = SubgridParameterOptimizer(grid_param) base_estimator = SklearnClassifier(clf=AdaBoostClassifier()) grid = GridOptimalSearchCV(base_estimator, generator, custom_scorer) cl = check_grid(grid, False, False, False) assert len(cl.features) <= 3 params = cl.get_params() for key in grid_param: if key in params: assert params[key] == grid.generator.best_params_[key] else: assert params['clf__' + key] == grid.generator.best_params_[key]
def test_gridsearch_on_tmva(): metric = numpy.random.choice([OptimalAMS(), RocAuc()]) scorer = FoldingScorer(metric) grid_param = OrderedDict({"MaxDepth": [4, 5], "NTrees": [10, 20]}) generator = SubgridParameterOptimizer(n_evaluations=5, param_grid=grid_param) try: from rep.estimators import TMVAClassifier base_tmva = TMVAClassifier( factory_options="Silent=True:V=False:DrawProgressBar=False", features=['column0', 'column1'], method='kBDT') grid = GridOptimalSearchCV(base_tmva, generator, scorer) classifier = check_grid(grid, False, False, False) # checking parameters assert len(classifier.features) == 2 params = classifier.get_params() for key in grid_param: assert params[key] == grid.generator.best_params_[key] except ImportError: pass