def test_repex_save_and_load():

    nc_filename = tempfile.mkdtemp() + "/out.nc"

    T_min = 1.0 * unit.kelvin
    T_i = [T_min, T_min * 10., T_min * 100.]
    n_replicas = len(T_i)

    ho = testsystems.HarmonicOscillator()

    system = ho.system
    positions = ho.positions

    states = [
        ThermodynamicState(system=system, temperature=T_i[i])
        for i in range(n_replicas)
    ]

    coordinates = [positions] * n_replicas

    parameters = {"number_of_iterations": 5}
    rex = replica_exchange.ReplicaExchange.create(states,
                                                  coordinates,
                                                  nc_filename,
                                                  parameters=parameters)
    rex.run()

    rex.extend(5)

    rex = resume(nc_filename)
    rex.run()

    eq(rex.__class__.__name__, "ReplicaExchange")
def test_hrex_save_and_load():

    nc_filename = tempfile.mkdtemp() + "/out.nc"

    temperature = 1 * unit.kelvin

    powers = [2., 2., 4.]
    n_replicas = len(powers)

    oscillators = [
        testsystems.PowerOscillator(b=powers[i]) for i in range(n_replicas)
    ]

    systems = [ho.system for ho in oscillators]
    positions = [ho.positions for ho in oscillators]

    state = ThermodynamicState(system=systems[0], temperature=temperature)

    mpicomm = dummympi.DummyMPIComm()
    parameters = {"number_of_iterations": 200}
    replica_exchange = hamiltonian_exchange.HamiltonianExchange.create(
        state,
        systems,
        positions,
        nc_filename,
        mpicomm=mpicomm,
        parameters=parameters)
    replica_exchange.run()

    replica_exchange.extend(100)

    replica_exchange = resume(nc_filename)
    eq(replica_exchange.iteration, 200)
    replica_exchange.run()
def test_hrex_save_and_load():

    nc_filename = tempfile.mkdtemp() + "/out.nc"

    temperature = 1 * unit.kelvin

    powers = [2., 2., 4.]
    n_replicas = len(powers)

    oscillators = [
        testsystems.PowerOscillator(b=powers[i]) for i in range(n_replicas)
    ]

    systems = [ho.system for ho in oscillators]
    positions = [ho.positions for ho in oscillators]

    state = ThermodynamicState(system=systems[0], temperature=temperature)

    parameters = {"number_of_iterations": 5}
    rex = hamiltonian_exchange.HamiltonianExchange.create(
        state, systems, positions, nc_filename, parameters=parameters)
    rex.run()

    rex.extend(5)

    rex = resume(nc_filename)
    rex.run()

    eq(rex.__class__.__name__, "HamiltonianExchange")
Exemple #4
0
def test_hrex_save_and_load(mpicomm):

    nc_filename = tempfile.mkdtemp() + "/out.nc"

    temperature = 1 * unit.kelvin

    K0 = 100.0  # Units are automatically added by the testsystem
    K = [K0, K0 * 10., K0 * 1.]
    powers = [2., 2., 4.]
    n_replicas = len(K)

    oscillators = [
        testsystems.PowerOscillator(b=powers[i]) for i in range(n_replicas)
    ]

    systems = [ho.system for ho in oscillators]
    positions = [ho.positions for ho in oscillators]

    state = ThermodynamicState(system=systems[0], temperature=temperature)

    parameters = {"number_of_iterations": 200}
    replica_exchange = hamiltonian_exchange.HamiltonianExchange.create(
        state,
        systems,
        positions,
        nc_filename,
        mpicomm=mpicomm,
        parameters=parameters)
    replica_exchange.run()

    replica_exchange.extend(100)

    replica_exchange = resume(nc_filename, mpicomm=mpicomm)
    eq(replica_exchange.iteration, 200)
    replica_exchange.run()
Exemple #5
0
def test_check_positions():
    nc_filename = tempfile.mkdtemp() + "/out.nc"

    T_min = 1.0 * unit.kelvin
    T_i = [T_min, T_min * 10., T_min * 100.]
    n_replicas = len(T_i)

    ho = testsystems.HarmonicOscillator()

    system = ho.system
    positions = ho.positions

    states = [
        ThermodynamicState(system=system, temperature=T_i[i])
        for i in range(n_replicas)
    ]

    coordinates = [positions] * n_replicas

    mpicomm = dummympi.DummyMPIComm()
    parameters = {"number_of_iterations": 10}
    replica_exchange = ReplicaExchange.create(states,
                                              coordinates,
                                              nc_filename,
                                              mpicomm=mpicomm,
                                              parameters=parameters)
    replica_exchange.run()

    db = replica_exchange.database
    db.check_energies()
def test_harmonic_oscillators_save_and_load():

    nc_filename = tempfile.mkdtemp() + "/out.nc"

    T_min = 1.0 * unit.kelvin
    T_i = [T_min, T_min * 10., T_min * 100.]
    n_replicas = len(T_i)

    ho = testsystems.HarmonicOscillator()

    system = ho.system
    positions = ho.positions

    states = [
        ThermodynamicState(system=system, temperature=T_i[i])
        for i in range(n_replicas)
    ]

    coordinates = [positions] * n_replicas

    mpicomm = dummympi.DummyMPIComm()
    parameters = {"number_of_iterations": 200}
    replica_exchange = ReplicaExchange.create(states,
                                              coordinates,
                                              nc_filename,
                                              mpicomm=mpicomm,
                                              parameters=parameters)
    replica_exchange.run()

    replica_exchange.extend(100)

    replica_exchange = resume(nc_filename, mpicomm=mpicomm)
    eq(replica_exchange.iteration, 200)
    replica_exchange.run()
def test_power_oscillators():

    nc_filename = tempfile.mkdtemp() + "/out.nc"

    temperature = 1 * unit.kelvin

    powers = [2., 2., 4.]
    n_replicas = len(powers)

    oscillators = [testsystems.PowerOscillator(b=powers[i]) for i in range(n_replicas)]

    systems = [ho.system for ho in oscillators]
    positions = [ho.positions for ho in oscillators]

    state = ThermodynamicState(system=systems[0], temperature=temperature)

    mpicomm = dummympi.DummyMPIComm()
    
    parameters = {"number_of_iterations":2000}
    replica_exchange = hamiltonian_exchange.HamiltonianExchange.create(state, systems, positions, nc_filename, mpicomm=mpicomm, parameters=parameters)
    replica_exchange.run()

    u_permuted = replica_exchange.database.ncfile.variables["energies"][:]
    s = replica_exchange.database.ncfile.variables["states"][:]
    u = permute_energies(u_permuted, s)

    beta = (state.temperature * kB) ** -1.
    u0 = np.array([[testsystems.PowerOscillator.reduced_potential(beta, ho2.K, ho2.b, ho.K, ho.b) for ho in oscillators] for ho2 in oscillators])

    l = np.log(u.mean(0))
    l0 = np.log(u0)

    eq(l0, l, decimal=1)
Exemple #8
0
def test_properties_all_testsystems():
    testsystem_classes = testsystems.TestSystem.__subclasses__()
    logging.info("Testing analytical property computation:")
    for testsystem_class in testsystem_classes:
        class_name = testsystem_class.__name__
        logging.info(class_name)
        print class_name # DEBUG
        testsystem = testsystem_class()
        property_list = testsystem.analytical_properties
        state = ThermodynamicState(temperature=300.0*u.kelvin, pressure=1.0*u.atmosphere, system=testsystem.system)
        if len(property_list) > 0:
            for property_name in property_list:
                method = getattr(testsystem, 'get_' + property_name)
                logging.info("%32s . %32s : %32s" % (class_name, property_name, str(method(state))))
def test_repex_multiple_save_and_load():

    nc_filename = tempfile.mkdtemp() + "/out.nc"

    T_min = 1.0 * unit.kelvin
    T_i = [T_min, T_min * 2.0, T_min * 2.0]
    n_replicas = len(T_i)

    ho = testsystems.HarmonicOscillator()

    system = ho.system
    positions = ho.positions

    states = [
        ThermodynamicState(system=system, temperature=T_i[i])
        for i in range(n_replicas)
    ]

    coordinates = [positions] * n_replicas

    parameters = {"number_of_iterations": steps}
    rex = replica_exchange.ReplicaExchange.create(states,
                                                  coordinates,
                                                  nc_filename,
                                                  parameters=parameters)
    rex.run()

    for repeat in range(repeats):
        replica_states0 = rex.replica_states
        Nij_proposed0 = rex.Nij_proposed
        Nij_accepted0 = rex.Nij_accepted
        sampler_states0 = rex.sampler_states

        rex.extend(steps)

        rex = resume(nc_filename)
        replica_states1 = rex.replica_states
        Nij_proposed1 = rex.Nij_proposed
        Nij_accepted1 = rex.Nij_accepted
        sampler_states1 = rex.sampler_states

        eq(replica_states0, replica_states1)
        eq(Nij_proposed0, Nij_proposed1)
        eq(Nij_accepted0, Nij_accepted1)

        rex.run()
def test_hrex_multiple_save_and_load():

    nc_filename = tempfile.mkdtemp() + "/out.nc"

    temperature = 1 * unit.kelvin

    powers = [2., 2., 2.]
    n_replicas = len(powers)

    oscillators = [
        testsystems.PowerOscillator(b=powers[i]) for i in range(n_replicas)
    ]

    systems = [ho.system for ho in oscillators]
    positions = [ho.positions for ho in oscillators]

    state = ThermodynamicState(system=systems[0], temperature=temperature)

    parameters = {"number_of_iterations": steps}
    rex = hamiltonian_exchange.HamiltonianExchange.create(
        state, systems, positions, nc_filename, parameters=parameters)
    rex.run()

    for repeat in range(repeats):
        replica_states0 = rex.replica_states
        Nij_proposed0 = rex.Nij_proposed
        Nij_accepted0 = rex.Nij_accepted
        sampler_states0 = rex.sampler_states

        rex.extend(steps)

        rex = resume(nc_filename)
        replica_states1 = rex.replica_states
        Nij_proposed1 = rex.Nij_proposed
        Nij_accepted1 = rex.Nij_accepted
        sampler_states1 = rex.sampler_states

        eq(replica_states0, replica_states1)
        eq(Nij_proposed0, Nij_proposed1)
        eq(Nij_accepted0, Nij_accepted1)

        rex.run()
def test_harmonic_oscillators():
    nc_filename = tempfile.mkdtemp() + "/out.nc"

    T_min = 1.0 * unit.kelvin
    T_i = [T_min, T_min * 10., T_min * 100.]
    n_replicas = len(T_i)

    ho = testsystems.HarmonicOscillator()

    system = ho.system
    positions = ho.positions

    states = [
        ThermodynamicState(system=system, temperature=T_i[i])
        for i in range(n_replicas)
    ]

    coordinates = [positions] * n_replicas

    mpicomm = dummympi.DummyMPIComm()
    parameters = {"number_of_iterations": 1000}
    replica_exchange = ReplicaExchange.create(states,
                                              coordinates,
                                              nc_filename,
                                              mpicomm=mpicomm,
                                              parameters=parameters)
    replica_exchange.run()

    u_permuted = replica_exchange.database.ncfile.variables["energies"][:]
    s = replica_exchange.database.ncfile.variables["states"][:]

    u = permute_energies(u_permuted, s)

    u0 = np.array([[ho.reduced_potential_expectation(s0, s1) for s1 in states]
                   for s0 in states])

    l0 = np.log(
        u0
    )  # Compare on log scale because uncertainties are proportional to values
    l1 = np.log(u.mean(0))
    eq(l0, l1, decimal=1)
Exemple #12
0
def test_get_traj():
    nc_filename = tempfile.mkdtemp() + "/out.nc"

    T_min = 300.0 * unit.kelvin
    T_i = [T_min, T_min * 1.01, T_min * 1.1]
    n_replicas = len(T_i)

    ho = testsystems.AlanineDipeptideExplicit()

    system = ho.system
    positions = ho.positions

    states = [
        ThermodynamicState(system=system, temperature=T_i[i])
        for i in range(n_replicas)
    ]

    coordinates = [positions] * n_replicas

    mpicomm = dummympi.DummyMPIComm()
    parameters = {"number_of_iterations": 3}
    replica_exchange = ReplicaExchange.create(states,
                                              coordinates,
                                              nc_filename,
                                              mpicomm=mpicomm,
                                              parameters=parameters)
    replica_exchange.run()

    db = replica_exchange.database

    prmtop_filename = testsystems.get_data_filename(
        "data/alanine-dipeptide-explicit/alanine-dipeptide.prmtop")
    crd_filename = testsystems.get_data_filename(
        "data/alanine-dipeptide-explicit/alanine-dipeptide.crd")
    trj0 = md.load_restrt(crd_filename, top=prmtop_filename)
    db.set_traj(trj0)

    trj1 = db.get_traj(state_index=0)
    trj2 = db.get_traj(replica_index=0)
Exemple #13
0
temperature = 300 * u.kelvin
friction = 0.3 / u.picosecond
timestep = 2.0 * u.femtosecond

forcefield = app.ForceField("amber10.xml", "tip3p.xml")

pdb = app.PDBFile(pdb_filename)

model = app.modeller.Modeller(pdb.topology, pdb.positions)
model.addSolvent(forcefield, padding=0.01 * u.nanometer)

system = forcefield.createSystem(model.topology,
                                 nonbondedMethod=app.PME,
                                 nonbondedCutoff=1.0 * u.nanometers,
                                 constraints=app.HAngles)

states = [
    ThermodynamicState(system=system, temperature=T_i[i])
    for i in range(n_replicas)
]

coordinates = [model.getPositions()] * n_replicas

#database = repex.netcdf_io.NetCDFDatabase(nc_filename, states, coordinates)

#replica_exchange = ReplicaExchange(states, coordinates, nc_filename)
#replica_exchange = ReplicaExchange.create_repex(states, coordinates, nc_filename, **{})
replica_exchange = ReplicaExchange.resume_repex(nc_filename, **{})
replica_exchange.number_of_iterations = 20
replica_exchange.run()
Exemple #14
0
def subtest_mcmc_expectation(testsystem, move_set):
    if debug:
        print testsystem.__class__.__name__
        print str(move_set)

    # Test settings.
    temperature = 298.0 * units.kelvin
    pressure = 1.0 * units.atmospheres
    nequil = 10  # number of equilibration iterations
    niterations = 20  # number of production iterations

    # Retrieve system and positions.
    [system, positions] = [testsystem.system, testsystem.positions]

    platform_name = 'Reference'
    from simtk.openmm import Platform
    platform = Platform.getPlatformByName(platform_name)

    # Compute properties.
    kB = units.BOLTZMANN_CONSTANT_kB * units.AVOGADRO_CONSTANT_NA
    kT = kB * temperature
    ndof = 3 * system.getNumParticles() - system.getNumConstraints()

    # Create thermodynamic state
    from repex.thermodynamics import ThermodynamicState
    thermodynamic_state = ThermodynamicState(system=testsystem.system,
                                             temperature=temperature,
                                             pressure=pressure)

    # Create MCMC sampler.
    from repex.mcmc import MCMCSampler
    sampler = MCMCSampler(thermodynamic_state,
                          move_set=move_set,
                          platform=platform)

    # Create sampler state.
    from repex.mcmc import SamplerState
    sampler_state = SamplerState(system=testsystem.system,
                                 positions=testsystem.positions,
                                 platform=platform)

    # Equilibrate
    for iteration in range(nequil):
        #print "equilibration iteration %d / %d" % (iteration, nequil)

        # Update sampler state.
        sampler_state = sampler.run(sampler_state, 1)

    # Accumulate statistics.
    x_n = np.zeros(
        [niterations], np.float64
    )  # x_n[i] is the x position of atom 1 after iteration i, in angstroms
    potential_n = np.zeros(
        [niterations], np.float64
    )  # potential_n[i] is the potential energy after iteration i, in kT
    kinetic_n = np.zeros(
        [niterations], np.float64
    )  # kinetic_n[i] is the kinetic energy after iteration i, in kT
    temperature_n = np.zeros(
        [niterations], np.float64
    )  # temperature_n[i] is the instantaneous kinetic temperature from iteration i, in K
    volume_n = np.zeros(
        [niterations],
        np.float64)  # volume_n[i] is the volume from iteration i, in K
    for iteration in range(niterations):
        if debug: print "iteration %d / %d" % (iteration, niterations)

        # Update sampler state.
        sampler_state = sampler.run(sampler_state, 1)

        # Get statistics.
        potential_energy = sampler_state.potential_energy
        kinetic_energy = sampler_state.kinetic_energy
        total_energy = sampler_state.total_energy
        instantaneous_temperature = kinetic_energy * 2.0 / ndof / (
            units.BOLTZMANN_CONSTANT_kB * units.AVOGADRO_CONSTANT_NA)
        volume = sampler_state.volume

        #print "potential %8.1f kT | kinetic %8.1f kT | total %8.1f kT | volume %8.3f nm^3 | instantaneous temperature: %8.1f K" % (potential_energy/kT, kinetic_energy/kT, total_energy/kT, volume/(units.nanometers**3), instantaneous_temperature/units.kelvin)

        # Accumulate statistics.
        x_n[iteration] = sampler_state.positions[0, 0] / units.angstroms
        potential_n[iteration] = potential_energy / kT
        kinetic_n[iteration] = kinetic_energy / kT
        temperature_n[iteration] = instantaneous_temperature / units.kelvin
        volume_n[iteration] = volume / (units.nanometers**3)

    # Compute expected statistics.
    if ('get_potential_expectation' in dir(testsystem)):
        # Skip this check if the std dev is zero.
        skip_test = False
        if (potential_n.std() == 0.0):
            skip_test = True
            if debug: print "Skipping potential test since variance is zero."
        if not skip_test:
            potential_expectation = testsystem.get_potential_expectation(
                thermodynamic_state) / kT
            potential_mean = potential_n.mean()
            g = timeseries.statisticalInefficiency(potential_n, fast=True)
            dpotential_mean = potential_n.std() / np.sqrt(niterations / g)
            potential_error = potential_mean - potential_expectation
            nsigma = abs(potential_error) / dpotential_mean
            test_passed = True
            if (nsigma > NSIGMA_CUTOFF):
                test_passed = False

            if debug or (test_passed is False):
                print "Potential energy expectation"
                print "observed %10.5f +- %10.5f kT | expected %10.5f | error %10.5f +- %10.5f (%.1f sigma)" % (
                    potential_mean, dpotential_mean, potential_expectation,
                    potential_error, dpotential_mean, nsigma)
                if test_passed:
                    print "TEST PASSED"
                else:
                    print "TEST FAILED"
                print "----------------------------------------------------------------------------"

    if ('get_volume_expectation' in dir(testsystem)):
        # Skip this check if the std dev is zero.
        skip_test = False
        if (volume_n.std() == 0.0):
            skip_test = True
            if debug: print "Skipping volume test."
        if not skip_test:
            volume_expectation = testsystem.get_volume_expectation(
                thermodynamic_state) / (units.nanometers**3)
            volume_mean = volume_n.mean()
            g = timeseries.statisticalInefficiency(volume_n, fast=True)
            dvolume_mean = volume_n.std() / np.sqrt(niterations / g)
            volume_error = volume_mean - volume_expectation
            nsigma = abs(volume_error) / dvolume_mean
            test_passed = True
            if (nsigma > NSIGMA_CUTOFF):
                test_passed = False

            if debug or (test_passed is False):
                print "Volume expectation"
                print "observed %10.5f +- %10.5f kT | expected %10.5f | error %10.5f +- %10.5f (%.1f sigma)" % (
                    volume_mean, dvolume_mean, volume_expectation,
                    volume_error, dvolume_mean, nsigma)
                if test_passed:
                    print "TEST PASSED"
                else:
                    print "TEST FAILED"
                print "----------------------------------------------------------------------------"
Exemple #15
0
T_i = [ T_min + (T_max - T_min) * (np.exp(float(i) / float(n_replicas-1)) - 1.0) / (np.e - 1.0) for i in range(n_replicas) ]


pdb_filename = "./1vii.pdb"

temperature = 300 * u.kelvin
friction = 0.3 / u.picosecond
timestep = 2.0 * u.femtosecond

forcefield = app.ForceField("amber10.xml", "tip3p.xml")

pdb = app.PDBFile(pdb_filename)

model = app.modeller.Modeller(pdb.topology, pdb.positions)
model.addSolvent(forcefield, padding=0.01 * u.nanometer)

system = forcefield.createSystem(model.topology, nonbondedMethod=app.PME, nonbondedCutoff=1.0 * u.nanometers, constraints=app.HAngles)

states = [ ThermodynamicState(system=system, temperature=T_i[i]) for i in range(n_replicas) ]

coordinates = [model.getPositions()] * n_replicas

#database = repex.netcdf_io.NetCDFDatabase(nc_filename, states, coordinates)

#replica_exchange = ReplicaExchange(states, coordinates, nc_filename)
#replica_exchange = ReplicaExchange.create_repex(states, coordinates, nc_filename,  mpicomm=MPI.COMM_WORLD, **{})
replica_exchange = ReplicaExchange.resume_repex(nc_filename, mpicomm=MPI.COMM_WORLD, **{})
replica_exchange.number_of_iterations = 30
replica_exchange.run()
Exemple #16
0
#context = openmm.Context(system, integrator, platform, options)
#context.setPositions(positions)
#context.applyConstraints(tolerance)
#print context.getPlatform().getName()

# Create MCMC move set.
from repex.mcmc import HMCMove, GHMCMove, LangevinDynamicsMove, MonteCarloBarostatMove
#move_set = [ GHMCMove(nsteps=10), HMCMove(nsteps=10) ]
move_set = [GHMCMove(), MonteCarloBarostatMove()]
#move_set = [ GHMCMove() ]
#move_set = [ LangevinDynamicsMove() ]

# Create thermodynamic state
from repex.thermodynamics import ThermodynamicState
thermodynamic_state = ThermodynamicState(system=testsystem.system,
                                         temperature=temperature,
                                         pressure=pressure)

# Create MCMC sampler.
from repex.mcmc import MCMCSampler
sampler = MCMCSampler(thermodynamic_state,
                      move_set=move_set,
                      platform=platform)

# Create sampler state.
from repex.mcmc import MCMCSamplerState
sampler_state = MCMCSamplerState(system=testsystem.system,
                                 positions=testsystem.positions)

# Equilibrate
for iteration in range(nequil):