Exemple #1
0
class RL_AGENT_ONE():
    """
    RL agent class
    """
    def __init__(self, memory_size, batch_size, learn_start_time, learn_fre, lr, replay_iters, eps_T, eps_t_init,
        gamma, update_period, board, device, model_path, r_memory_Fname, o_model_name, model_load=False ):
        self.step_now = 0 # record the step
        self.reward_num = 0
        self.reward_accumulated = 0 # delay reward
        self.final_tem = 10 # just for now
        self.step_last_update = 0 # record the last update time 
        self.update_period = update_period # for the off policy
        self.learn_start_time = learn_start_time 
        self.gamma = gamma
        self.batch_size = batch_size
        self.memory_size = memory_size
        self.alpha = 0.6
        self.beta = 0.4
        self.replay_bata_iters = replay_iters 
        self.replay_eps = 1e-6
        self.memory_min_num = 1000 #she min num to learn
        self.step_last_learn = 0 # record the last learn step
        self.learn_fre = learn_fre # step frequency to learn
        self.e_greedy = 1 # record the e_greedy
        self.eps_T = eps_T # par for updating the maybe step 80,0000
        self.eps_t_init = eps_t_init # par for updating the eps
         
        self.device = device
        self.model_path = model_path
        self.mode_enjoy = model_load
        if model_load == False: 
            self.policy_net = DQN(board[0], board[1], action_num).to(device)
            self.target_net = DQN(board[0], board[1], action_num).to(device)
            self.optimizer = optim.Adagrad(self.policy_net.parameters(), lr=lr)
            self.loss_fn = nn.functional.mse_loss # use the l1 loss
            self.memory = PrioritizedReplayBuffer(memory_size, self.alpha)
            self.beta_schedule = LinearSchedule(self.replay_bata_iters, self.beta, 1.0)
        else:
            self.load(o_model_name) 
        #self.optimizer = optim.RMSprop(self.policy_net.parameters(), lr=lr) 
        self.obs_new = None
        self.obs_old = None
        self.action = None
        self.action_old = None
        self.dqn_direct_flag = False # show if the dqn action is done
        self.model_save_flag = False
    
    def reset(self):
        """ 
        reset the flag, state, reward for a new half or game
        """
        self.obs_new = None
        self.obs_old = None
        self.action = None
        self.dqn_direct_flag = False

    def load(self, old_model):
        """
        load the trained model
        par:
        |old_model:str, the name of the old model
        """
        model_path_t = self.model_path + 't' + old_model
        self.target_net = torch.load(model_path_t, map_location=self.device)
        self.target_net.eval()
        print('target net par', self.target_net.state_dict())

    def save(self):
        """
        save the trained model
        """
        t = time.strftime('%m%d%H%M%S')
        self.model_path_p = self.model_path + 'p' + t + '.pt'
        self.model_path_t = self.model_path + 't' + t + '.pt'
        print('target net par is', self.policy_net.state_dict())
        torch.save(self.policy_net, self.model_path_p)
        torch.save(self.target_net, self.model_path_t)

    def learn(self, env, step_now, obs_old, action, obs_new, reward, done):
        """
        This func is used to learn the agent
        par:
        |step_now: int, the global time of training
        |env: class-Environment, use it for nothing
        |transition: action, obs_new, reward 
        |obs_old/new: instance obs
        |done: bool, if the game is over 
        """
        """ check if we should update the policy net """
        if step_now - self.step_last_update == self.update_period:
            self.step_last_update = step_now
            self.target_net.load_state_dict(self.policy_net.state_dict())
                
        """ init the obs_new for init learn """
        state_new = self.feature_combine(obs_new) # get the feature state
        state_old = self.feature_combine(obs_old) # get the feature state
        transition_now = (state_old, action, \
            reward, state_new)

        """ augument reward data to the memory """
        if reward > 0:
            self.memory.add(*self.data_augment(transition_now), done)
        self.memory.add(state_old, action, \
            reward, state_new, done)

        """ select the batch memory to update the network """
        step_diff = step_now - self.step_last_learn
        if step_now > self.learn_start_time and \
                step_diff >= self.learn_fre and \
                    self.memory.__len__() > self.memory_min_num:
            self.step_last_learn = step_now # update the self.last learn
            batch_data = self.memory.sample(self.batch_size, \
                    beta=self.beta_schedule.value(step_now))
            s_o_set, actions, rewards, s_n_set, dones, weights, idx_set = batch_data
            loss_list = []
            batch_idx_list = []
            reward_not_zero_cnt = 0
            actions = [torch.tensor(a, device=self.device) \
                    for a in actions]

            """ cnt how many times learn for non reward """
            actions_new = [self.policy_net(s_n).detach().max(0)[1] \
                    for s_n in s_n_set]
            target_values = [self.gamma*self.target_net(s_n).gather(0, actions_new[idx]) \
                    for idx, s_n in enumerate(s_n_set)]
            target_values = [t_*(1 - d_) + r_ \
                  for t_, d_, r_ in zip(target_values, dones, rewards)] 
            policy_values = [self.policy_net(s).gather(0, a) \
                    for s, a in zip(s_o_set, actions)]
            loss = [self.loss_fn(p_v, t_v)+ self.replay_eps \
                    for p_v, t_v in zip(policy_values, target_values)]
            loss_back = sum(loss) / self.batch_size

            """ update the par """
            self.optimizer.zero_grad()
            loss_back.backward()
            self.optimizer.step()
            self.memory.update_priorities(idx_set, torch.tensor(loss).detach().numpy())

        """ check if we should save the model """
        if self.model_save_flag == True:
            self.save()

    def select_egreedy(self, q_value, step_now):
        """
        select the action by e-greedy policy
        arg:
        |q_value: the greedy standard 
        """
        self.e_greedy = np.exp((self.eps_t_init - step_now) / self.eps_T)
        if self.e_greedy < 0.3:
            self.e_greedy = 0.3

        """ if we are in enjoying mode """
        if self.mode_enjoy == True:
            print('q_value is', q_value)
            self.e_greedy = 0.3

        """ select the action by e-greedy """
        if np.random.random() > self.e_greedy:
            action = action_list[ \
                    np.where(q_value==np.max(q_value))[0][0] ]
        else:
            action = action_list[np.random.randint(action_num)]
        return action

    def feature_combine(self, obs):
        """ 
        This file extract features from the obs.layers and 
        combine them into a new feature layer
        Used feature layers:    
        """
        """ combine all the layers """
        feature_c = obs.copy()
        feature_c = feature_c.astype(np.float32)
        feature_c = torch.tensor(feature_c, dtype=torch.float32, device=self.device)
        size = feature_c.shape
        feature_c = feature_c.resize_(1, 1, size[0], size[1])
        return feature_c

    def data_augment(self, transition):
        """
        use this func to flip the feature, to boost the experience,
        deal the problem of sparse reward
        par:
        |transition: tuple, with (feature_o, action, feature_n, reward) 
        """
        flip_ver_dim = 2
        feature_old = transition[0]
        action = transition[1]
        feature_new = transition[3]
        reward = transition[2]

        """ vertical flip """
        feature_o_aug = feature_old.flip([flip_ver_dim])
        feature_n_aug = feature_new.flip([flip_ver_dim])

        """ vertical :action flip """
        if action == 0:  action = 1
        elif action == 1: action = 0

        return feature_o_aug, action, reward, feature_n_aug

    def act(self, map, step_now):
        """ this func is interact with the competition func """
        dqn_action = -1 # reset
        state_old = self.feature_combine(map) # get the feature
        q_values = self.policy_net(state_old)
        action = self.select_egreedy( \
            q_values.cpu().detach().numpy(), step_now)# features to model

        return action

    def act_enjoy(self, map):
        """ this func is interact with the competition func """
        dqn_action = -1 # reset
        step_now = self.eps_T
        state_old = self.feature_combine(map) # get the feature
        q_values = self.target_net(state_old)
        action = self.select_egreedy( \
            q_values.cpu().detach().numpy(), step_now)# features to model

        return action
Exemple #2
0
def learn(env,
          q_func,
          lr=1e-2,
          max_timesteps=1000000,
          buffer_size=50000,
          exploration_fraction=1,
          exploration_final_eps=0.02,
          train_freq=1,
          batch_size=32,
          print_freq=100,
          checkpoint_freq=10000,
          checkpoint_path=None,
          learning_starts=1000,
          gamma=1.0,
          target_network_update_freq=500,
          prioritized_replay=False,
          prioritized_replay_alpha=0.6,
          prioritized_replay_beta0=0.4,
          prioritized_replay_beta_iters=None,
          prioritized_replay_eps=1e-6,
          param_noise=False,
          callback=None):
    """Train a deepq model.

    Parameters
    -------
    env: gym.Env
        environment to train on
    q_func: (tf.Variable, int, str, bool) -> tf.Variable
        the model that takes the following inputs:
            observation_in: object
                the output of observation placeholder
            num_actions: int
                number of actions
            scope: str
            reuse: bool
                should be passed to outer variable scope
        and returns a tensor of shape (batch_size, num_actions) with values of every action.
    lr: float
        learning rate for adam optimizer
    max_timesteps: int
        number of env steps to optimizer for
    buffer_size: int
        size of the replay buffer
    exploration_fraction: float
        fraction of entire training period over which the exploration rate is annealed
    exploration_final_eps: float
        final value of random action probability
    train_freq: int
        update the model every `train_freq` steps.
        set to None to disable printing
    batch_size: int
        size of a batched sampled from replay buffer for training
    print_freq: int
        how often to print out training progress
        set to None to disable printing
    checkpoint_freq: int
        how often to save the model. This is so that the best version is restored
        at the end of the training. If you do not wish to restore the best version at
        the end of the training set this variable to None.
    learning_starts: int
        how many steps of the model to collect transitions for before learning starts
    gamma: float
        discount factor
    target_network_update_freq: int
        update the target network every `target_network_update_freq` steps.
    prioritized_replay: True
        if True prioritized replay buffer will be used.
    prioritized_replay_alpha: float
        alpha parameter for prioritized replay buffer
    prioritized_replay_beta0: float
        initial value of beta for prioritized replay buffer
    prioritized_replay_beta_iters: int
        number of iterations over which beta will be annealed from initial value
        to 1.0. If set to None equals to max_timesteps.
    prioritized_replay_eps: float
        epsilon to add to the TD errors when updating priorities.
    callback: (locals, globals) -> None
        function called at every steps with state of the algorithm.
        If callback returns true training stops.

    Returns
    -------
    act: ActWrapper
        Wrapper over act function. Adds ability to save it and load it.
        See header of baselines/deepq/categorical.py for details on the act function.
    """
    # Create all the functions necessary to train the model

    sess = tf.Session()
    sess.__enter__()

    # capture the shape outside the closure so that the env object is not serialized
    # by cloudpickle when serializing make_obs_ph

    def make_obs_ph(name):
        return ObservationInput(env.observation_space, name=name)

    act, train, update_target, debug = build_train(
        make_obs_ph=make_obs_ph,
        q_func=q_func,
        num_actions=env.action_space.n,
        optimizer=tf.train.AdamOptimizer(learning_rate=lr),
        gamma=gamma,
        grad_norm_clipping=10,
        param_noise=param_noise)

    act_params = {
        'make_obs_ph': make_obs_ph,
        'q_func': q_func,
        'num_actions': env.action_space.n,
    }

    act = ActWrapper(act, act_params)

    # Create the replay buffer
    if prioritized_replay:
        replay_buffer = PrioritizedReplayBuffer(buffer_size,
                                                alpha=prioritized_replay_alpha)
        if prioritized_replay_beta_iters is None:
            prioritized_replay_beta_iters = max_timesteps
        beta_schedule = LinearSchedule(prioritized_replay_beta_iters,
                                       initial_p=prioritized_replay_beta0,
                                       final_p=1.0)
    else:
        replay_buffer = ReplayBuffer(buffer_size)
        beta_schedule = None
    # Create the schedule for exploration starting from 1.
    exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction *
                                                        max_timesteps),
                                 initial_p=1.0,
                                 final_p=exploration_final_eps)
    #exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps),
    #                            initial_p=0.7,
    #                            final_p=0.15)

    # Initialize the parameters and copy them to the target network.
    U.initialize()
    update_target()

    episode_rewards = [0.0]
    saved_mean_reward = None
    obs = env.reset()
    reset = True

    with tempfile.TemporaryDirectory() as td:
        td = checkpoint_path or td

        model_file = os.path.join(td, "model")
        model_saved = False
        if tf.train.latest_checkpoint(td) is not None:
            load_state(model_file)
            logger.log('Loaded model from {}'.format(model_file))
            model_saved = True

        for t in range(max_timesteps):
            if callback is not None:
                if callback(locals(), globals()):
                    break
            # Take action and update exploration to the newest value
            kwargs = {}
            if not param_noise:
                update_eps = exploration.value(t)
                update_param_noise_threshold = 0.
            else:
                update_eps = 0.
                # Compute the threshold such that the KL divergence between perturbed and non-perturbed
                # policy is comparable to eps-greedy exploration with eps = exploration.value(t).
                # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017
                # for detailed explanation.
                update_param_noise_threshold = -np.log(1. - exploration.value(
                    t) + exploration.value(t) / float(env.action_space.n))
                kwargs['reset'] = reset
                kwargs[
                    'update_param_noise_threshold'] = update_param_noise_threshold
                kwargs['update_param_noise_scale'] = True
            action = act(np.array(obs)[None], update_eps=update_eps,
                         **kwargs)[0]
            env_action = action
            reset = False
            new_obs, rew, done, _ = env.step(env_action)
            # Store transition in the replay buffer.
            replay_buffer.add(obs, action, rew, new_obs, float(done))
            obs = new_obs

            episode_rewards[-1] += rew
            if done:
                obs = env.reset()
                episode_rewards.append(0.0)
                reset = True

            if t > learning_starts and t % train_freq == 0:
                # Minimize the error in Bellman's equation on a batch sampled from replay buffer.
                if prioritized_replay:
                    experience = replay_buffer.sample(
                        batch_size, beta=beta_schedule.value(t))
                    (obses_t, actions, rewards, obses_tp1, dones, weights,
                     batch_idxes) = experience
                else:
                    obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample(
                        batch_size)
                    weights, batch_idxes = np.ones_like(rewards), None
                td_errors = train(obses_t, actions, rewards, obses_tp1, dones,
                                  weights)
                if prioritized_replay:
                    new_priorities = np.abs(td_errors) + prioritized_replay_eps
                    replay_buffer.update_priorities(batch_idxes,
                                                    new_priorities)

            if t > learning_starts and t % target_network_update_freq == 0:
                # Update target network periodically.
                update_target()

            mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1)
            num_episodes = len(episode_rewards)
            if done and print_freq is not None and len(
                    episode_rewards) % print_freq == 0:
                logger.record_tabular("steps", t)
                logger.record_tabular("episodes", num_episodes)
                logger.record_tabular("mean 100 episode reward",
                                      mean_100ep_reward)
                logger.record_tabular("% time spent exploring",
                                      int(100 * exploration.value(t)))
                #logger.record_tabular("replay buffer size",  replay_buffer.__len__())
                logger.dump_tabular()

            #if done and num_episodes % 100 == 1:
            #    filehandler = open("cartpole_MDP_replay_buffer.obj","wb")
            #    pickle.dump(replay_buffer,filehandler)
            #    filehandler.close()
            #    print('MDP model samples saved',replay_buffer.__len__())

            #    file = open("cartpole_MDP_replay_buffer.obj",'rb')
            #    reloaded_replay_buffer = pickle.load(file)
            #    file.close()
            #    print('MDP model samples loaded',reloaded_replay_buffer.__len__())

            if (checkpoint_freq is not None and t > learning_starts
                    and num_episodes > 100 and t % checkpoint_freq == 0):
                if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward:
                    if print_freq is not None:
                        logger.log(
                            "Saving model due to mean reward increase: {} -> {}"
                            .format(saved_mean_reward, mean_100ep_reward))
                    save_state(model_file)
                    model_saved = True
                    saved_mean_reward = mean_100ep_reward
        if model_saved:
            if print_freq is not None:
                logger.log("Restored model with mean reward: {}".format(
                    saved_mean_reward))
            load_state(model_file)

    #file = open("cartpole_MDP_replay_buffer.obj",'rb')
    #reloaded_replay_buffer = pickle.load(file)
    #file.close()
    #reloaded_replay_buffer.__len__()
    filehandler = open("cartpole_MDP_replay_buffer.obj", "wb")
    pickle.dump(replay_buffer, filehandler)
    filehandler.close()
    print('MDP model samples saved', replay_buffer.__len__())

    file = open("cartpole_MDP_replay_buffer.obj", 'rb')
    reloaded_replay_buffer = pickle.load(file)
    file.close()
    print('MDP model samples loaded', reloaded_replay_buffer.__len__())
    return act