for smoothv, weightv in weights:
                            d3p += smooth(raw, int(smoothv)) * weightv

                        raw = d3p
                    else:
                        #print(type(weights),np.nanmean(raw))
                        if weights == "submed":
                            raw -= np.nanmedian(raw)
                        d3p = raw
                #print(weights, "here")

            if args.nan0 and "Exp" not in signal:

                d3p[np.isnan(d3p)] = 0
            btosee.append([x, d3p, signal])
            if sup_sig != None:
                btosee.append(sup_sig)
                sup_sig = None

        ToSee.append(btosee)
"""
for signal in args.filename:
    print(signal)
    x, d3p = replication_data(cell, "", chromosome=ch,
                              start=start, end=end,
                              resolution=resolution, raw=False,filename=signal)

    ToSee += [[[x,d3p, signal]]]
"""
plotly_blocks(x, ToSee, name=args.name, default="lines")
    weight_t = np.sum(x0[tstart - start:tend - start])
    x0[tstart - start:tend -
       start] = weight_t * np.array(opti.best) / np.sum(opti.best)
    end_error, gMRTp, gMRT, gRFD, gRFDs, wRFD = run(x0, ndiff, start, end)
    print("New Global error", initerror)

    if cell != "Cerevisae":
        ToSee = [[[1 - gMRTpi, "MRTi"], [1 - gMRTp, "MRT"],
                  [
                      x[::10 // resolution],
                      1 - gMRT[:len(x[::10 // resolution])], "MRTexp"
                  ]],
                 [[gRFD, "RFDExp"], [gRFDsi, "RFDsimi_init"],
                  [gRFDs, "RFDsim_end"]]]
    else:
        ToSee = [[[1 - gMRTpi, "MRTi"], [1 - gMRTp, "MRT"],
                  [x, 1 - gMRT, "MRTexp"]],
                 [[gRFD, "RFDExp"], [gRFDsi, "RFDsimi_init"],
                  [gRFDs, "RFDsim_end"]]]
    ToSee += [[[init, "init"], [x0, "Optimised"]],
              [[smooth(np.abs(gRFD - gRFDs), 250), "dsm"]]]
    plotly_blocks(x, ToSee, name=args.name + "global_%i" % i, default="lines")

    pd.DataFrame({
        "signalValue": x0,
        "chromStart": x * 1000,
        "chromEnd": x * 1000,
        "chrom": ["chr%i" % ch] * len(x)
    }).to_csv(args.name + "optimised_signal.csv", index=False, sep="\t")
print(initerrorg, end_error)
Exemple #3
0
        # print(mask_RFD)
        if args.input:
            ToSee += [[[d3ps, "initiation"]]]
            if "Yeast" in cell:
                _, tere = replication_data(cell,
                                           "ter",
                                           chromosome=ch,
                                           start=start,
                                           end=end,
                                           resolution=1,
                                           raw=False)
                #print(tere)
                ToSee += [[[tere * 20, "TerExp"], [Pt, "ProbaTer"]]]
            ToSee += [[[stallp, "stalling"]]]
        if not args.only_one or (args.only_one and ch == 1):
            plotly_blocks(x, ToSee, name=name_w + ".html", default="lines")

print(len(GData), len(d3p))
GData["signal"] = d3p
GData.to_csv(args.name + "global_profiles.csv",
             index=False,
             float_format="%.2f")
ldatg.to_csv(args.name + "global_scores.csv", index=False)

pRFD = stats.pearsonr(np.concatenate(gRFD), np.concatenate(gRFDe)),
sRFD = np.std(np.concatenate(gRFD) - np.concatenate(gRFDe))

pMRT = stats.pearsonr(np.concatenate(gMRT), np.concatenate(gMRTe)),
sMRT = np.std(np.concatenate(gMRT) - np.concatenate(gMRTe))
meanCodire = np.mean(codire)
print(args.name + "global_corre.csv")
    initerror,MRTpi,MRTi,RFDi,RFDsi,wRFDt = evaluate(x0t,score=False)

    print("Initial local error",initerror)
    opti = PSO(evaluate,bounds=[0,1],x0=x0t,num_particles=15,maxiter=20,velocity_scale=100/len(x0t))

    end_error,MRTp,MRT,RFD,RFDs,wRFDt = evaluate(opti.best,score=False)

    #print("End error",end_error)
    if cell != "Cerevisae":
        ToSee = [[[1-MRTpi, "MRTi"],[1-MRTp, "MRT"], [x[::10//resolution], 1 - MRT[:len(x[::10//resolution])], "MRTexp"]],
                [[RFD, "RFDExp"], [RFDsi, "RFDsimi_init"],[RFDs, "RFDsim_end"]]]
    else:
        ToSee = [[[1-MRTpi, "MRTi"],[1-MRTp, "MRT"], [x[tstart:tend], 1 - MRT, "MRTexp"]],
                [[RFD, "RFDExp"], [RFDsi, "RFDsimi_init"],[RFDs, "RFDsim_end"],[RFDs+np.mean(left+right,axis=0),"Corrected2"],[gRFDsi[int((tstart-start)/res):int((tend-start)/res)]]]]
    ToSee += [[[initt,"init"],[opti.best,"Optimised"]],[[np.mean(left,axis=0)],[np.mean(right,axis=0)]]]
    plotly_blocks(x[tstart:tend],ToSee, name=args.name+"local_%i" % i, default="lines")

    #Print reconneect:

    exclude = int(len(x0t) * 0.1)
    weight_t  = np.sum(x0[tstart-start:tend-start][exclude:-exclude])
    x0[tstart-start:tend-start][exclude:-exclude] = weight_t * np.array(opti.best)[exclude:-exclude] / np.sum(opti.best[exclude:-exclude])
    end_error,gMRTp,gMRT,gRFD,gRFDs,wRFD = run(x0,ndiff,start,end)
    print("New Global error",initerror)


    if cell != "Cerevisae":
        ToSee = [[[1-gMRTpi, "MRTi"],[1-gMRTp, "MRT"], [x[::10//resolution], 1 - gMRT[:len(x[::10//resolution])], "MRTexp"]],
                [[gRFD, "RFDExp"], [gRFDsi, "RFDsimi_init"],[gRFDs, "RFDsim_end"]]]
    else:
        ToSee = [[[1-gMRTpi, "MRTi"],[1-gMRTp, "MRT"], [x, 1 - gMRT, "MRTexp"]],