def UploadCsv(event, context, ACCESS_KEY, SECRET_KEY, BUCKET_NAME):
    try:
        content_type_header = event['headers']['content-type']

        body = base64.b64decode(event['body'])
        username = decoder.MultipartDecoder(
            body, content_type_header).parts[1].content.decode('utf-8')
        print('username----', username)
        csv_file_name = 'dataset.csv'
        csv_file = decoder.MultipartDecoder(
            body, content_type_header).parts[2].content.decode('utf-8')
        csv_file_path = f'/tmp/{csv_file_name}'
        print("csv_File------ ", csv_file)
        f = open(csv_file_path, "w")
        f.write(csv_file)
        f.close()
        print('created csv file')
        df = pd.read_csv(csv_file_path, names=['data', 'categories'])
        df.fillna('No value', inplace=True)
        codes, index = pd.factorize(df['categories'])
        df['labels'] = codes
        df = df.drop(['categories'], axis=1)
        df.to_csv(csv_file_path, index=False, header=False)
        print('created clean csv')
        S3_FILE_NAME = f'{username}/{csv_file_name}'

        upload_to_s3(csv_file_path, BUCKET_NAME, S3_FILE_NAME, ACCESS_KEY,
                     SECRET_KEY)
        print('uploaded to s3')
        os.remove(csv_file_path)
        print('removed file')
        return tuple(index)
    except Exception as e:
        print(repr(e))
Exemple #2
0
def face_swap(event, context):
    try:
        content_type_header = event['headers']['content-type']
        # print(event['body'])
        body = base64.b64decode(event["body"])

        picture = decoder.MultipartDecoder(body, content_type_header).parts[0]
        picture1 = decoder.MultipartDecoder(body, content_type_header).parts[1]
        image_bytes = picture.content
        image_bytes1 = picture1.content
        print("Start Swapping the faces")
        image = Image.open(io.BytesIO(image_bytes))
        image1 = Image.open(io.BytesIO(image_bytes1))
        print("Image Shape:", image.size)
        np_image, np_image1, = np.array(image), np.array(image1)
        swapped_image = face_swap_func(np_image, np_image1)
        pil_image = Image.fromarray(swapped_image)
        res_image = get_response_image(pil_image)
        img = get_response_image(image)
        img1 = get_response_image(image1)
        # res_image = ""
        message = 'here is my message'
        response = {
            'Status': 'Success',
            'message': message,
            'img': img,
            'img1': img1,
            'swapped_image': res_image
        }
        # img_bytes = image.tobytes()
        # bytes_encoded = base64.b64encode(img_bytes)
        return {
            "statusCode": 200,
            "headers": {
                'Content-Type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                "Access-Control-Allow-Credentials": True
            },
            # "body": response, "isBase64Encoded":"true"
            "body": json.dumps(response)
        }
    except Exception as e:
        traceback.print_exc()
        return {
            "statusCode": 500,
            "headers": {
                'Content-Type': 'multipart/form-data',
                'Access-Control-Allow-Origin': '*',
                "Access-Control-Allow-Credentials": True
            },
            "body": json.dumps({"error": repr(e)})
        }
Exemple #3
0
def get_images_from_event(event, max_files=1):
    try:
        pic_details = []

        content_type_key = "Content-Type"
        if event["headers"].get(content_type_key.lower()):
            content_type_key = content_type_key.lower()
        content_type_header = event["headers"][content_type_key]

        body = base64.b64decode(event["body"])
        if type(event["body"]) is str:
            event["body"] = bytes(event["body"], "utf-8")

        pictures = decoder.MultipartDecoder(body, content_type_header)
        for part in pictures.parts:
            filename = get_picture_filename(part).replace('"', "")
            pic_details.append((part, filename))

        logger.info(f"len: {len(pic_details)}")

        return pic_details[0:max_files]

    except Exception as e:
        logger.exception(e)
        raise e
    def post_cb(self, request, context):
        from requests_toolbelt.multipart import decoder

        multipart_data = decoder.MultipartDecoder(
            request.body, request.headers["content-type"])
        part = multipart_data.parts[0]
        self.content[self.relpath(request.path)] = part.content
def handler(event, context):

    body = event['body-json']

    # 람다 생성 확인용 코드
    if body == "test":
        return {'statusCode': 200, 'body': "함수가 정상적으로 배포 되었습니다."}

    body = base64.b64decode(body)

    boundary = body.split(b'\r\n')[0]
    boundary = boundary.decode('utf-8')
    content_type = f"multipart/form-data; boundary={boundary}"

    multipart_data = decoder.MultipartDecoder(body, content_type)

    img = multipart_to_input(multipart_data)
    result = inference_model(img)

    return {
        'statusCode':
        200,
        'body':
        json.dumps(
            f"{result[0][1]}&{result[0][2]}&{result[1][1]}&{result[1][2]}&{result[2][1]}&{result[2][2]}&{result[3][1]}&{result[3][2]}&{result[4][1]}&{result[4][2]}"
        )
    }
Exemple #6
0
    def get_multipart_filename(self, content_type, request):
        """Return filename for given multipart request."""
        body = request.body
        multipart_data = decoder.MultipartDecoder(body, content_type)
        multipart_dict = {}
        filename_array = [self.filename, request.method]
        for part in multipart_data.parts:
            content_disposition = part.headers.get(
                'Content-Disposition'.encode(),
                None
            )

            decoded_cd = content_disposition.decode("utf-8")
            multipart_name = self.get_multipart_name(decoded_cd)

            multipart_dict[multipart_name] = part.text.replace(' ', '-')

        ordered_dict = collections.OrderedDict(
            sorted(multipart_dict.items())
        )

        for key, value in ordered_dict.items():
            filename_array.append(key + '=' + value)
        filename = '--'.join(filename_array)

        return filename
def classify_image(event, context):
    try:
        content_type_header = event['headers']['content-type']
        print(event['body'])
        body = base64.b64decode(event['body'])
        print('BODY LOADED')

        picture = decoder.MultipartDecoder(body, content_type_header).parts[0]
        prediction = get_prediction(image_bytes=picture.content)
        print("The prediction is {}".format(prediction))
        #filename = picture.headers[b'Content-Disposition'].decoder().split(';')[2].split('=')[1]

        return {
            "statusCode": 200,
            "headers": {
                'Content-Type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                'Access-Control-Allow-Credentials': True
            },
            "body": json.dumps({"predicted": prediction})
        }
    except Exception as e:
        print(repr(e))
        return {
            "statusCode": 500,
            "headers": {
                'Content-Type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                'Access-Control-Allow-Credentials': True
            },
            "body": json.dumps({"predicted": prediction})
        }
Exemple #8
0
def parse_multipart_req(body, content_type):
    """
    Parse multipart-encoded form data
    """
    req = {}

    # convert to bytes if needed
    if isinstance(body, str):
        body = bytes(body, "utf-8")

    multipart_data = decoder.MultipartDecoder(body, content_type)
    for part in multipart_data.parts:
        content_disposition = part.headers.get(b"Content-Disposition", b"")
        content_disposition = content_disposition.decode("utf-8")
        search_field = PATTERN.search(content_disposition)
        if search_field:
            if search_field.group(0) == "image":
                img_io = io.BytesIO(part.content)
                img_io.seek(0)
                req["image"] = img_io
            elif search_field.group(0) == "url":
                url = part.content.decode("utf-8")
                img_io = io.BytesIO(urlopen(url).read())
                req["url"] = img_io
            elif search_field.group(0) == "bbox":
                req["bbox"] = json.loads(part.content.decode("utf-8"))
            else:
                logger.debug("Bad field name in form-data")
    return req
def parse_email(content_type, body):
    multipart_string = base64.b64decode(body)
    parts = decoder.MultipartDecoder(multipart_string, content_type).parts
    for part in parts:
        if 'name="email"' in str(part.headers[b'Content-Disposition']):
            return part.text
    return None
def classify_image(event, context):
    """Take input image from API and classify it."""
    print("Executing classify_image")
    try:
        # Get image from the request
        print("requesting")
        print(event)
        content_type_header = event['headers']['Content-Type']
        print("content_type_header loaded")
        body = base64.b64decode(event['body'])
        print('Body loaded')

        # Obtain the final picture that will be used by the model
        picture = decoder.MultipartDecoder(body, content_type_header).parts[0]
        print('Picture obtained')

        # print("picture",dir(picture))

        # Get predictions
        prediction = get_prediction(image_bytes=picture.content)
        prediction_name = class_name[prediction]
        print(f'Prediction: {prediction}\tPrediction Name: {prediction_name}')

        return {
            'statusCode':
            200,
            'body':
            json.dumps({
                'predicted': prediction,
                'predicted name': prediction_name
            })
        }
    except Exception as e:
        print(repr(e))
        return {'statusCode': 500, 'body': json.dumps({'error': repr(e)})}
Exemple #11
0
def main_handler(event, context):
    try:
        content_type_header = event['headers']['content-type']
        print('content_type header: ' + content_type_header)
        #print('Event Body: ' + event["body"])

        body = base64.b64decode(event["body"])
        #print('Image content Loaded')
        picture = decoder.MultipartDecoder(body, content_type_header).parts[0]
        print(f'MultipartDecoder processed')
        img = Image.open(io.BytesIO(picture.content))
        print(f'Input image data loaded')

        lr, hr_restore, hr = get_sample_images(real_image=img,
                                               upscale_factor=2)
        print(
            f'lr shape: {lr.shape},  hr_restore shape: {hr_restore.shape}, hr shape: {hr.shape}'
        )
        lrSize = lr.shape[1]
        hrSize = hr.shape[1]

        lr = lr.unsqueeze(0)
        sr = g_model(lr)  # create SR image
        sr, lr = sr.squeeze(0), lr.squeeze(0)

        lr_np = tensor2np(lr)
        hr_restore_np = tensor2np(hr_restore)
        sr_np = tensor2np(sr)

        sr_np_norm = np.uint8(sr_np * 255)
        print(f'SR image created')

        return {
            "statusCode":
            200,
            "headers": {
                'Content-Type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                "Access-Control-Allow-Credentials": True
            },
            "body":
            json.dumps({
                'lrSize': lrSize,
                'hrSize': hrSize,
                'lrImg': img_to_base64(lr_np),
                'hrRestoredImg': img_to_base64(hr_restore_np),
                'srImg': img_to_base64(sr_np_norm)
            })
        }
    except Exception as e:
        print(repr(e))
        return {
            "statusCode": 500,
            "headers": {
                'Content-Type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                "Access-Control-Allow-Credentials": True
            },
            "body": json.dumps({"error": repr(e)})
        }
Exemple #12
0
def get_image_from_event(event):
    content_type_header = event["headers"]["content-type"]
    body = base64.b64decode(event["body"])
    logger.info("Body Loaded")
    picture = decoder.MultipartDecoder(body, content_type_header).parts[0]
    filename = get_picture_filename(picture).replace('"', "")
    return picture, filename
def lambdaHandler(event, context):

    headers = event['headers']
    content_type = headers['Content-Type'] if 'Content-Type' in headers else headers['content-type']

    # This code can only handle base64 encoded
    # Need to work on Non-base64 encoded case
    isBase64 = event['isBase64Encoded']

    # In the CDK, if the binaryMediaTypes: ['multipart/form-data'] specified on the API level, it is base64 encoded, otherwise, it is not
    body = base64.b64decode(event['body'])
    
    form_data = decoder.MultipartDecoder(body, content_type).parts
    part = form_data[0]

    # print(part.headers)
    # print(part.content)
    
    key = f'F-{int(time.time())}.jpg'
    client = boto3.client('s3')
    def get_presigned_url():
        client.put_object(Body = part.content, Bucket = bucket, Key = key)
        # ExpiresIn - time in second
        return client.generate_presigned_url('get_object', Params = { 'Bucket': bucket, 'Key': key }, ExpiresIn = 60 * 60 * 24)

    presigned_url = get_presigned_url()

    return {
        'statusCode': 200,
        'headers': { 'Access-Control-Allow-Origin': '*', 'content-type': 'application/json' },
        'body': json.dumps(presigned_url)
    }
Exemple #14
0
async def format_files(r, encode=False):
    if encode:
        pass
    else:
        decoded = decoder.MultipartDecoder(await r.content, r.mimetype)
        dump = {}
        for part in decoded.parts:
            header = part.headers[b"Content-Disposition"].decode("utf-8")
            mimetype = part.headers.get(b"Content-Type", None)
            filename = None

            for section in [h.strip() for h in header.split(";")]:
                split = section.split("=")
                if len(split) > 1:
                    key = split[0]
                    value = split[1]

                    value = value[1:-1]

                    if key == "filename":
                        filename = value
                    elif key == "name":
                        formname = value

            if mimetype is None:
                dump[formname] = part.content
            else:
                dump[formname] = {
                    "filename": filename,
                    "content": part.content,
                    "content-type": mimetype.decode("utf-8"),
                }
        return dump
Exemple #15
0
    def WadoRs(self, wado_url: Text, accept_header: Text = None) -> bytes:
        """Performs the request, parses the multipart response, and returns content.

    Args:
      wado_url: URL for the WADO request.
      accept_header: Value of the Accept header to use. If set to None, no
        Accept header will be used.

    Returns:
      The content of the first (and only) part as a string.

    Raises:
      UnexpectedResponseError: If the response status was not success or the
        number of parts in the multipart response is different from 1.
    """
        resp, content = self._InvokeHttpRequest(
            wado_url,
            'GET',
            headers={'Accept': accept_header}
            if accept_header is not None else {})
        if 200 <= resp.status >= 299:
            raise UnexpectedResponseError(
                'WadoRs error. Response Status: %d,\nURL: %s,\nContent: %s.' %
                (resp.status, wado_url, content))
        multipart_data = decoder.MultipartDecoder(content,
                                                  resp['content-type'])
        num_parts = len(multipart_data.parts)
        if num_parts != 1:
            raise UnexpectedResponseError(
                'WadoRs multipart response expected to have a single part.'
                ' Actual: %d.\nURL: %s' % (num_parts, wado_url))
        return multipart_data.parts[0].content
Exemple #16
0
def text_classification(event,context):
    try:
        print('event-------',event)

        content_type_header = event['headers']['content-type']
        
        body = base64.b64decode(event['body'])
        print('body-------',body)
        print('body loaded')
        print(content_type_header)
        
        decoded = decoder.MultipartDecoder(body,content_type_header)
        function_usage =( decoded.parts[0].content).decode('utf-8')
        if function_usage == 'text_classify_test':
            prediction = predict_class(S3_BUCKET,decoded,ACCESS_KEY,SECRET_KEY,min_len=5)
            return {
                'statusCode': 200,
                'headers':{
                    'Content-Type': 'application/json',
                    'Access-Control-Allow-Origin': '*',
                    'Access-Control-Allow-Credentials': True
                },
                'body': json.dumps({'status': '1', 'result': str(prediction) })
            }
    except Exception as e:
        print(repr(e))
        return {
            'statusCode': 500,
            'headers':{
                'Content-Type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                'Access-Control-Allow-Credentials': True
            },
            'body': json.dumps({ 'error': repr(e) })
        }
def parse_multipart_data(body_dec, content_type):
    """Parser for transforming multipart form data into readable key value pairs

    Args:
        body_dec (byte),
        content_type (str)

    Returns:
        Parsed Form Data (list): List of key value pairs describing each form data
    """
    items = []

    for part in decoder.MultipartDecoder(body_dec, content_type).parts:
        disposition = part.headers[b'Content-Disposition']
        params = {}
        for dispPart in str(disposition).split(';'):
            kv = dispPart.split('=', 2)
            params[str(kv[0]).strip()] = str(kv[1]).strip(
                '\"\'\t \r\n') if len(kv) > 1 else str(kv[0]).strip()

        type = part.headers[b'Content-Type'].decode(
            "utf-8") if b'Content-Type' in part.headers else None
        items.append({"content": part.content, "type": type, "params": params})

    return items
Exemple #18
0
def classify_image (event, context):
    try:
        content_type_header = event['headers']['content-type']
        print(event['body'])
        body = base64.b64decode(event["body"])

        picture = decoder.MultipartDecoder(body, content_type_header).parts[0]
        prediction = get_prediction(image_bytes=picture.content)
        print (prediction)

        filename = picture.headers[b'Content-Disposition'].decode().split(';')[1].split('=')[1]
        if len(filename) < 4:
            filename = picture.headers[b'Content-Disposition'].decode().split(';')[2].split('=')[1]

        return {
            "statusCode": 200,
            "headers": {
                'Content-Type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                "Access-Control-Allow-Credentials": True
            },
            "body": json.dumps({'file': filename.replace('"', ''), 'predicted': [prediction, classes[prediction] ]})
        }
    except Exception as e:
        print(repr(e))
        return {
            "statusCode": 500,
            "headers": {
                'Content-Type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                "Access-Control-Allow-Credentials": True
            },
            "body": json.dumps({"error": repr(e)})
        }
Exemple #19
0
def classifyHandler(event, context):

    content_type_header = event['headers']['Content-Type']

    body = event['body'].encode()

    rawBytes = decoder.MultipartDecoder(body,
                                        content_type_header).parts[0].content

    # # TODO: why do rawBytes look off? why are they unable to be opened as image?

    # rawIO = BytesIO(rawBytes)
    # image = Image.open(rawBytes)

    # # image = np.array(image)
    # # image = tf.image.convert_image_dtype(image, tf.float32)
    # # image = tf.image.resize(image, (224,224))
    # # image = np.expand_dims(image, axis=0)
    # # prediction = model.predict_classes(image)[0]
    # # prediction = class_dict['prediction']

    response = {
        'statusCode':
        200,
        'body':
        json.dumps({
            'sample_bytes': str(rawBytes)[:10000],
            'request_body': str(event['body'][:10000])
        })
    }

    return response
Exemple #20
0
    def deserialize(self, data, headers, response_type):
        """Deserializes response into an object.

        :param response: RESTResponse object to be deserialized.
        :param response_type: class literal for
            deserialized object, or string of class name.

        :return: deserialized object.
        """
        # handle file downloading
        # save response body into a tmp file and return the instance
        if response_type == "file":
            return self.__deserialize_file(data, headers)

        if response_type == "multipart":
            return decoder.MultipartDecoder(data, headers['Content-Type'],
                                            'UTF-8')

        # fetch data from response object
        if six.PY3:
            data = data.decode('utf8')
        try:
            data = json.loads(data)
        except:
            pass

        return self.__deserialize(data, response_type)
Exemple #21
0
    def _postData(cls, mediaType, body):
        if mediaType and mediaType.mimeType() == 'multipart/form-data':
            try:
                multipart_data = decoder.MultipartDecoder(body, str(mediaType))
            except ImproperBodyPartContentException:
                return {}

            params = []
            default_type = None
            for part in multipart_data.parts:
                if 'Content-Disposition' not in part.headers:
                    continue

                if default_type is None:
                    default_type = part.headers.get('Content-Type')

                _, pdict = cgi.parse_header(
                    part.headers['Content-Disposition'])

                p = dict(name=pdict.get('name'),
                         contentType=part.headers.get('Content-Type',
                                                      default_type))
                if pdict.get('filename'):
                    p['fileName'] = pdict.get('filename')

                if 'text/' in p['contentType']:
                    p['value'] = part.content
                else:
                    p['value'] = b64encode(part.content)

                params.append(p)

            return dict(mimeType=str(mediaType), params=params, comment='')

        return {}
Exemple #22
0
def classify_image(event, context):
    """Classify image using api.

    Function is called from this template python: handler.py

    Args:
        event: Dictionary containing API inputs 
        context: Dictionary

    Returns:
        dictionary: API response

    Raises:
        Exception: Returning API repsonse 500
    """
    try:
        content_type_header = event['headers']['content-type']
        # print(event['body'])
        body = base64.b64decode(event["body"])
        print('BODY LOADED')

        picture = decoder.MultipartDecoder(body, content_type_header).parts[0]
        prediction = get_prediction(image_bytes=picture.content)
        print(prediction)

        prediction_label = imagenet1000_classidx_to_label(prediction)

        filename = (picture.headers[b'Content-Disposition'].decode().split(';')
                    [1].split('=')[1])

        if len(filename) < 4:
            filename = (picture.headers[b'Content-Disposition'].decode().split(
                ';')[2].split('=')[1])

        return {
            "statusCode":
            200,
            "headers": {
                'Content-Type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                'Access-Control-Allow-Credentials': True
            },
            "body":
            json.dumps({
                'file': filename.replace('"', ''),
                'predicted': f"{prediction}, {prediction_label}"
            })
        }
    except Exception as e:
        print(repr(e))
        return {
            "statusCode": 500,
            "headers": {
                'Content-Type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                'Access-Control-Allow-Credentials': True
            },
            "body": json.dumps({"error": repr(e)})
        }
Exemple #23
0
    def _upload_artifacts_callback(self, request):
        # TODO We should authorise the artifacts first

        if (
            "JOB-TOKEN" not in request.headers
            or request.headers["JOB-TOKEN"] != self.token
        ):
            return (403, {}, json.dumps({"message": "403 Forbidden"}))

        if self.status != "running":
            return (
                403,
                {},
                json.dumps({"message": "403 Forbidden  - Job is not running"}),
            )

        if self.file_data is not None:
            return (
                400,
                {},
                json.dumps(
                    {"message": '400 (Bad request) "Already uploaded" not given'}
                ),
            )

        from requests_toolbelt.multipart import decoder

        payload = {}
        for part in decoder.MultipartDecoder(
            request.body, request.headers["Content-Type"]
        ).parts:
            header = (
                part.headers[b"Content-Disposition"].decode(part.encoding).split("; ")
            )
            assert header[0] == "form-data"
            header = {h.split("=")[0]: h.split("=")[1][1:-1] for h in header[1:]}

            assert header["name"] not in payload
            if header["name"] == "file":
                assert len(header) == 2
                payload[header["name"]] = (header["filename"], part.content)
            else:
                assert len(header) == 1
                payload[header["name"]] = part.text
        file_name, file_data = payload["file"]

        if "artifact_type" in payload or "artifact_format" in payload:
            raise NotImplementedError("Not sure what this does")

        if "expire_in" in payload:
            pass

        # TODO I think this should update the job's underlying job_info object
        # https://gitlab.com/gitlab-org/gitlab-ce/blob/78b3eea7d248c6d3c48b615c9df24a95cb5fd1d8/lib/api/runner.rb#L292
        self.upload_artifacts(file_name, file_data)

        headers = {}
        response = self.as_dict()
        return (201, headers, json.dumps(response))
Exemple #24
0
def version_4(event):
    content_type_header = event['headers']['content-type']
    postdata = base64.b64decode(event['body']).decode('iso-8859-1')
    lst = []
    for part in decoder.MultipartDecoder(postdata.encode('utf-8'),
                                         content_type_header).parts:
        lst.append(part.text)
    upload_to_s3(lst, "image.jpeg")
Exemple #25
0
def classify_image(event, context):
    try:
        if (event['httpMethod'] == 'OPTIONS'):
            return {
                "statusCode": 200,
                "headers": {
                    'Access-control-Allow-origin': '*',
                    'Access-control-Allow-credentials': True,
                    'Access-Control-Allow-Methods':
                    'POST, GET, OPTIONS, DELETE',
                    'Access-Control-Allow-Headers': '*',
                },
                "body": json.dumps({'foo': 'bar'})
            }
        content_type_header = event['headers']['content-type']
        #print(event['body'])
        body = base64.b64decode(event["body"])
        print('BODY LOADED')
        picture = decoder.MultipartDecoder(body, content_type_header).parts[0]
        face_tensor, probs = extract_align_faces(image_bytes=picture.content)
        prediction = get_prediction(face_tensor)
        print("Get Prediction returned:", prediction, type(prediction),
              class_names[int(prediction)])
        predicted_val = class_names[int(prediction)]
        predicted_str = f'{predicted_val}'

        content_disp = picture.headers[b'Content-Disposition'].decode().split(
            ';')
        filename = content_disp[1].split('=')[1]
        if len(filename) < 4:
            filename = content_disp[2].split('=')[1]

        return {
            "statusCode":
            200,
            "headers": {
                'Content-Type': 'application/json',
                'Access-control-Allow-origin': '*',
                'Access-control-Allow-credentials': True
            },
            "body":
            json.dumps({
                'file': filename.replace('"', ''),
                'predicted': predicted_str,
                'class': int(prediction)
            })
        }
    except Exception as e:
        print("classify_image Exception", repr(e))
        return {
            "statusCode": 500,
            "headers": {
                'Content-Type': 'application/json',
                'Access-control-Allow-origin': '*',
                "Access-control-Allow-credentials": True
            },
            "body": json.dumps({"error": repr(e)})
        }
Exemple #26
0
def unwrap_multipart_response(response: Response):
    """

    :param response:
    :return:
    """
    content = response.content.decode("utf-8")
    boundary = content.split("\r")[0][2:]
    content_type = f"multipart/form-data; boundary={boundary}"
    return decoder.MultipartDecoder(response.content, content_type)
def face_swap_handler(event, context):
    try:
        content_type_header = event['headers']['content-type']
        body = base64.b64decode(event["body"])
        print('content_type header: ' + content_type_header)
        print('Event Body: ' + event["body"])
        #json_body = json.loads(event["body"])
        picture1 = decoder.MultipartDecoder(body, content_type_header).parts[0]
        picture2 = decoder.MultipartDecoder(body, content_type_header).parts[1]
        im1 = np.frombuffer(picture1.content, dtype=np.uint8)
        im2 = np.frombuffer(picture2.content, dtype=np.uint8)

        print('Body Loaded')

        #picture = decoder.MultipartDecoder(body, content_type_header).parts[0]
        #print(f'MultipartDecoder processed')
        swapped_face = fsp.face_swap(im1, im2, PREDICTOR_PATH_68)

        return {
            "statusCode":
            200,
            "headers": {
                'Content-Type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                "Access-Control-Allow-Credentials": True
            },
            "body":
            json.dumps({
                'file': 'swap',
                'swapface': img_to_base64(swapped_face)
            })
        }
    except Exception as e:
        print(repr(e))
        return {
            "statusCode": 500,
            "headers": {
                'Content-Type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                "Access-Control-Allow-Credentials": True
            },
            "body": json.dumps({"error": repr(e)})
        }
def face_align(event, context):
    try:
        content_type_header = event["headers"]["content-type"]

        body = base64.b64decode(event["body"])
        # if type(event["body"]) is str:
        #     event["body"] = bytes(event["body"], "utf-8")

        pictures = decoder.MultipartDecoder(body, content_type_header)
        print(len(pictures.parts))
        for picture in pictures.parts:
            im_ndarray = cv2.imdecode(np.frombuffer(picture.content, np.uint8), -1)
            print("image_decoded")
            err, aligned    = FD.faceAligner(im_ndarray)
            print(aligned)
            filename = picture.headers[b'content-Disposition'].decode().split(';')[1].split('=')[1]
            if len(filename) < 4:
                filename = picture.headers[b'content-Disposition'].decode().split(';')[2].split('=')[1]

            fields = {"face-aligned": base64.b64encode(aligned).decode("utf-8")}

            return {
            "statusCode": 200,
            "headers": {
                'content-type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                "Access-Control-Allow-Credentials": True
            },
            "body": json.dumps(fields),
        }

    except ValueError as ve:
        return {
            "statusCode": 422,
            "headers": {
                'content-type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                "Access-Control-Allow-Credentials": True
            },
            "body": json.dumps({"error": repr(ve)}),
        }

    except Exception as e:
        print(repr(e))
        return {
            'statusCode': 500,
            "headers": {
                'content-type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                "Access-Control-Allow-Credentials": True
            },
            "body": json.dumps({"error": repr(e)})
        }
Exemple #29
0
def classify_image(event, context):
    """Take input image from API and classify it."""
    try:
        # Get image from the request
        if 'Content-Type' in event['headers']:
            content_type_header = event['headers']['Content-Type']
        else:
            content_type_header = event['headers']['content-type']
        body = base64.b64decode(event['body'])
        print('Body loaded')

        # Obtain the final picture that will be used by the model
        picture = decoder.MultipartDecoder(body, content_type_header).parts[0]
        print('Picture obtained')

        # Get predictions
        prediction = get_prediction(image_bytes=picture.content)
        prediction_name = imagenet_class_names[prediction]
        print(f'Prediction: {prediction}\tPrediction Name: {prediction_name}')

        filename = picture.headers[b'Content-Disposition'].decode().split(
            ';')[1].split('=')[1]
        if len(filename) < 4:
            filename = picture.headers[b'Content-Disposition'].decode().split(
                ';')[2].split('=')[1]

        return {
            'statusCode':
            200,
            'headers': {
                'Content-Type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                'Access-Control-Allow-Credentials': True
            },
            'body':
            json.dumps({
                'file': filename.replace('"', ''),
                'predicted': prediction,
                'predicted_name': prediction_name,
            })
        }
    except Exception as e:
        print(repr(e))
        return {
            'statusCode': 500,
            'headers': {
                'Content-Type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                'Access-Control-Allow-Credentials': True
            },
            'body': json.dumps({'error': repr(e)})
        }
Exemple #30
0
def face_rec(event,context):
    try:
        print(event)
        print(context)
        content_type_header = event['headers']['content-type']
        print(event['body'])
        body = base64.b64decode(event["body"])
        print("BODY LOADED...")

        picture = decoder.MultipartDecoder(body, content_type_header).parts[0]
        prediction = get_prediction(image_bytes = picture.content)
        label = labels[str(prediction)]

        print(prediction,label)

        filename = picture.headers[b'Content-Disposition'].decode().split(';')[1].split('=')[1]
        if len(filename) < 4:
            filename = picture.headers[b'Content-Disposition'].decode().split(';')[2].split('=')[1]
        print('filename: '+filename.replace('"',''))

        return {
            "statusCode": 200,
            "headers": {
                'Content-Type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                "Access-Control-Allow-Credentials": True
            },
            "body": json.dumps({'status': 'Predicted' ,'predicted': prediction, 'label': label})
        }
        
    except ValueError as v:
        print(v)
        return {
            "statusCode": 200,
            "headers": {
                'Content-Type': 'application/json',
                'Access-Control-Allow-Origin': '*',
                "Access-Control-Allow-Credentials": True
            },
            "body": json.dumps({'status': str(v) ,'predicted': '', 'label': ''})
        }
    except Exception as e:
        print(repr(e))
        return {
            "statuscode" : 500,
            "headers" : {
                'Content-Type': 'application/json',
                'Access-Control-Allow-Origin' : '*',
                'Access-Control-Allow-Credentials' : True
            },
            "body": json.dumps({"error": str(repr(e))})
        }