def init_matrices(ens, mask, obs, rng): state_size = 2 report_step = 5 meas_data = MeasData(mask) meas_block = meas_data.addBlock("OBS", report_step, len(obs)) A = Matrix(state_size, mask.countEqual(True)) active_iens = 0 for iens, params in enumerate(ens): if mask[iens]: state = forward_model(params) meas_block[0, iens] = measure(state) A[0, active_iens] = params[0] A[1, active_iens] = params[1] active_iens += 1 S = meas_data.createS() obs_data = ObsData() obs_block = obs_data.addBlock("OBS", 1) for iobs, obs_value in enumerate(obs): obs_block[iobs] = obs_value R = obs_data.createR() dObs = obs_data.createDObs() E = obs_data.createE(rng, meas_data.getActiveEnsSize()) D = obs_data.createD(E, S) obs_data.scale(S, E=E, D=D, R=R, D_obs=dObs) return (A, S, E, D, R, dObs)
def test_create(self): obs_data = ObsData() obs_size = 10 block = obs_data.addBlock("OBS" , obs_size) self.assertTrue( isinstance( block , ObsBlock )) block[0] = (100,10) block[1] = (120,12) D = obs_data.createDObs() self.assertTrue( isinstance(D , Matrix )) self.assertEqual( D.dims() , (2,2)) self.assertEqual( D[0,0] , 100 ) self.assertEqual( D[1,0] , 120 ) self.assertEqual( D[0,1] , 10 ) self.assertEqual( D[1,1] , 12 ) obs_data.scaleMatrix( D ) self.assertEqual( D[0,0] , 10 ) self.assertEqual( D[1,0] , 10 ) self.assertEqual( D[0,1] , 1 ) self.assertEqual( D[1,1] , 1 ) R = obs_data.createR() self.assertEqual( (2,2) , R.dims() ) with self.assertRaises(IndexError): obs_data[10] v,s = obs_data[0] self.assertEqual( v , 100 ) self.assertEqual( s , 10 ) v,s = obs_data[1] self.assertEqual( v , 120 ) self.assertEqual( s , 12 )