Exemple #1
0
 def testBuildNonExistingLayerLargeModel(self):
     """Tests that the model is built correctly without unnecessary layers."""
     inputs = tf.random_uniform((5, 331, 331, 3))
     tf.train.create_global_step()
     with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
         pnasnet.build_pnasnet_large(inputs, 1000)
     vars_names = [x.op.name for x in tf.trainable_variables()]
     self.assertIn('cell_stem_0/1x1/weights', vars_names)
     self.assertNotIn('cell_stem_1/comb_iter_0/right/1x1/weights', vars_names)
Exemple #2
0
 def testBuildPreLogitsLargeModel(self):
     batch_size = 5
     height, width = 331, 331
     num_classes = None
     inputs = tf.random_uniform((batch_size, height, width, 3))
     tf.train.create_global_step()
     with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
         net, end_points = pnasnet.build_pnasnet_large(inputs, num_classes)
     self.assertFalse('AuxLogits' in end_points)
     self.assertFalse('Predictions' in end_points)
     self.assertTrue(net.op.name.startswith('final_layer/Mean'))
     self.assertListEqual(net.get_shape().as_list(), [batch_size, 4320])
Exemple #3
0
    def _extract_proposal_features(self, preprocessed_inputs, scope):
        """Extracts first stage RPN features.

    Extracts features using the first half of the PNASNet network.
    We construct the network in `align_feature_maps=True` mode, which means
    that all VALID paddings in the network are changed to SAME padding so that
    the feature maps are aligned.

    Args:
      preprocessed_inputs: A [batch, height, width, channels] float32 tensor
        representing a batch of images.
      scope: A scope name.

    Returns:
      rpn_feature_map: A tensor with shape [batch, height, width, depth]
      end_points: A dictionary mapping feature extractor tensor names to tensors

    Raises:
      ValueError: If the created network is missing the required activation.
    """
        del scope

        if len(preprocessed_inputs.get_shape().as_list()) != 4:
            raise ValueError(
                '`preprocessed_inputs` must be 4 dimensional, got a '
                'tensor of shape %s' % preprocessed_inputs.get_shape())

        with slim.arg_scope(
                pnasnet_large_arg_scope_for_detection(
                    is_batch_norm_training=self._train_batch_norm)):
            with arg_scope(
                [slim.conv2d, slim.batch_norm, slim.separable_conv2d],
                    reuse=self._reuse_weights):
                _, end_points = pnasnet.build_pnasnet_large(
                    preprocessed_inputs,
                    num_classes=None,
                    is_training=self._is_training,
                    final_endpoint='Cell_7')

        # Note that both 'Cell_6' and 'Cell_7' have equal depth = 2160.
        # Cell_7 is the last cell before second reduction.
        rpn_feature_map = tf.concat(
            [end_points['Cell_6'], end_points['Cell_7']], 3)

        # pnasnet.py does not maintain the batch size in the first dimension.
        # This work around permits us retaining the batch for below.
        batch = preprocessed_inputs.get_shape().as_list()[0]
        shape_without_batch = rpn_feature_map.get_shape().as_list()[1:]
        rpn_feature_map_shape = [batch] + shape_without_batch
        rpn_feature_map.set_shape(rpn_feature_map_shape)

        return rpn_feature_map, end_points
Exemple #4
0
 def testOverrideHParamsLargeModel(self):
     batch_size = 5
     height, width = 331, 331
     num_classes = 1000
     inputs = tf.random_uniform((batch_size, height, width, 3))
     tf.train.create_global_step()
     config = pnasnet.large_imagenet_config()
     config.set_hparam('data_format', 'NCHW')
     with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
         _, end_points = pnasnet.build_pnasnet_large(
             inputs, num_classes, config=config)
     self.assertListEqual(
         end_points['Stem'].shape.as_list(), [batch_size, 540, 42, 42])
Exemple #5
0
 def testNoAuxHeadLargeModel(self):
     batch_size = 5
     height, width = 331, 331
     num_classes = 1000
     for use_aux_head in (True, False):
         tf.reset_default_graph()
         inputs = tf.random_uniform((batch_size, height, width, 3))
         tf.train.create_global_step()
         config = pnasnet.large_imagenet_config()
         config.set_hparam('use_aux_head', int(use_aux_head))
         with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
             _, end_points = pnasnet.build_pnasnet_large(inputs, num_classes,
                                                         config=config)
         self.assertEqual('AuxLogits' in end_points, use_aux_head)
Exemple #6
0
 def testBuildLogitsLargeModel(self):
     batch_size = 5
     height, width = 331, 331
     num_classes = 1000
     inputs = tf.random_uniform((batch_size, height, width, 3))
     tf.train.create_global_step()
     with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
         logits, end_points = pnasnet.build_pnasnet_large(inputs, num_classes)
     auxlogits = end_points['AuxLogits']
     predictions = end_points['Predictions']
     self.assertListEqual(auxlogits.get_shape().as_list(),
                          [batch_size, num_classes])
     self.assertListEqual(logits.get_shape().as_list(),
                          [batch_size, num_classes])
     self.assertListEqual(predictions.get_shape().as_list(),
                          [batch_size, num_classes])
Exemple #7
0
    def testAllEndPointsShapesLargeModel(self):
        batch_size = 5
        height, width = 331, 331
        num_classes = 1000
        inputs = tf.random_uniform((batch_size, height, width, 3))
        tf.train.create_global_step()
        with slim.arg_scope(pnasnet.pnasnet_large_arg_scope()):
            _, end_points = pnasnet.build_pnasnet_large(inputs, num_classes)

        endpoints_shapes = {'Stem': [batch_size, 42, 42, 540],
                            'Cell_0': [batch_size, 42, 42, 1080],
                            'Cell_1': [batch_size, 42, 42, 1080],
                            'Cell_2': [batch_size, 42, 42, 1080],
                            'Cell_3': [batch_size, 42, 42, 1080],
                            'Cell_4': [batch_size, 21, 21, 2160],
                            'Cell_5': [batch_size, 21, 21, 2160],
                            'Cell_6': [batch_size, 21, 21, 2160],
                            'Cell_7': [batch_size, 21, 21, 2160],
                            'Cell_8': [batch_size, 11, 11, 4320],
                            'Cell_9': [batch_size, 11, 11, 4320],
                            'Cell_10': [batch_size, 11, 11, 4320],
                            'Cell_11': [batch_size, 11, 11, 4320],
                            'global_pool': [batch_size, 4320],
                            # Logits and predictions
                            'AuxLogits': [batch_size, 1000],
                            'Predictions': [batch_size, 1000],
                            'Logits': [batch_size, 1000],
                            }
        self.assertEqual(len(end_points), 17)
        self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
        for endpoint_name in endpoints_shapes:
            tf.logging.info('Endpoint name: {}'.format(endpoint_name))
            expected_shape = endpoints_shapes[endpoint_name]
            self.assertIn(endpoint_name, end_points)
            self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                                 expected_shape)