def load_emotion_model(model_path):
    img_width, img_height = 224, 224
    num_channels = 3
    num_classes = 7

    emotion_model = resnet101_model(img_height, img_width, num_channels,
                                    num_classes)
    emotion_model.load_weights(model_path, by_name=True)
    return emotion_model
Exemple #2
0
def RefineNet101(input_shape,
                 num_class,
                 resnet_weights=None,
                 frontend_trainable=True):
    '''Returns RefineNet model'''

    # for layer in base_model.layers:
    #     layer.trainable = False
    model_base = resnet101_model(input_shape, resnet_weights)

    # Get ResNet block output layers
    feature_maps = model_base.output

    filter_num = [512, 256, 256, 256]

    for i in range(4):
        feature_maps[i] = Conv2D(filter_num[i], 1,
                                 padding='same')(feature_maps[i])

    rf4 = RefineNetBlock(upper=feature_maps[0], lower=None)
    rf3 = RefineNetBlock(upper=feature_maps[1], lower=rf4)
    rf2 = RefineNetBlock(upper=feature_maps[2], lower=rf3)
    rf1 = RefineNetBlock(upper=feature_maps[3], lower=rf2)

    y = RCU(tensor=rf1, filters=256)
    y = RCU(tensor=y, filters=256)
    '''Bilinear causes the model not to learn anything, currently under test'''
    y = Upsample(tensor=y, method='transpose', scale=4)

    output = Conv2D(filters=num_class, kernel_size=(3, 3))(y)
    output = Conv2D(filters=1, kernel_size=(1, 1))(y)

    output = Activation('sigmoid', name='output_layer')(output)

    model = Model(inputs=model_base.input, outputs=output, name='RefineNet')
    print('*** Building Network Completed ***')
    print('*** Model Output Shape => ', model.output_shape, '***')
    model.compile(optimizer=Adam(lr=1e-4),
                  loss='binary_crossentropy',
                  metrics=['accuracy'])

    model.summary()
    #
    #    if(pretrained_weights):
    #    	model.load_weights(pretrained_weights)
    plot_model(model, to_file='refinenet_101.png', show_shapes=True)
    return model
Exemple #3
0
            num_corrects += 1
    return num_corrects / num_test_samples


if __name__ == '__main__':
    img_width, img_height = 224, 224
    num_channels = 3
    num_classes = 7
    class_names = [
        'Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral'
    ]
    # emotion = {0:'愤怒', 1:'厌恶', 2:'恐惧', 3:'高兴', 4:'悲伤', 5:'惊讶', 6: '无表情'}
    num_test_samples = 3589

    print("\nLoad the trained ResNet model....")
    model = resnet101_model(img_height, img_width, num_channels, num_classes)
    model.load_weights("models/model.best.hdf5", by_name=True)

    y_pred, y_prob = predict(model, 'fer2013/test')
    print("y_pred: " + str(y_pred))

    y_test = read_data('fer2013/fer2013.csv')
    y_test = decode(y_test)
    print("y_test: " + str(y_test))

    acc = calc_acc(y_pred, y_test)
    print("%s: %.2f%%" % ('acc', acc * 100))

    # Compute confusion matrix
    cnf_matrix = confusion_matrix(y_test, y_pred)
    np.set_printoptions(precision=2)
Exemple #4
0
def build_refinenet(input_shape,
                    num_class,
                    resnet_weights=None,
                    frontend_trainable=True):
    """
    Builds the RefineNet model. 
    Arguments:
      input_shape: Size of input image, including number of channels
      num_classes: Number of classes
      resnet_weights: Path to pre-trained weights for ResNet-101
      frontend_trainable: Whether or not to freeze ResNet layers during training
    Returns:
      RefineNet model
    """

    # Build ResNet-101
    model_base = resnet101_model(input_shape, resnet_weights)
    print("model_base=====", model_base)

    # Get ResNet block output layers
    high = model_base.output
    low = [None, None, None]

    # Get the feature maps to the proper size with bottleneck
    high[0] = Conv2D(512,
                     1,
                     padding='same',
                     name='resnet_map1',
                     kernel_initializer=kern_init,
                     kernel_regularizer=kern_reg)(high[0])
    high[1] = Conv2D(256,
                     1,
                     padding='same',
                     name='resnet_map2',
                     kernel_initializer=kern_init,
                     kernel_regularizer=kern_reg)(high[1])
    high[2] = Conv2D(256,
                     1,
                     padding='same',
                     name='resnet_map3',
                     kernel_initializer=kern_init,
                     kernel_regularizer=kern_reg)(high[2])
    high[3] = Conv2D(256,
                     1,
                     padding='same',
                     name='resnet_map4',
                     kernel_initializer=kern_init,
                     kernel_regularizer=kern_reg)(high[3])
    for h in high:
        h = BatchNormalization()(h)

    # RefineNet
    low[0] = RefineBlock(high_inputs=high[0], low_inputs=None,
                         block=4)  # Only input ResNet 1/32
    low[1] = RefineBlock(
        high_inputs=high[1], low_inputs=low[0],
        block=3)  # High input = ResNet 1/16, Low input = Previous 1/16
    low[2] = RefineBlock(
        high_inputs=high[2], low_inputs=low[1],
        block=2)  # High input = ResNet 1/8, Low input = Previous 1/8
    net = RefineBlock(
        high_inputs=high[3], low_inputs=low[2],
        block=1)  # High input = ResNet 1/4, Low input = Previous 1/4.

    net = ResidualConvUnit(net, name='rf_rcu_o1_')
    net = ResidualConvUnit(net, name='rf_rcu_o2_')

    net = UpSampling2D(size=4, name='rf_up_o')(net)
    # net = Conv2D(num_class, 3, activation='relu',padding='same', name='rf_pred1')(net)

    net = Conv2D(1, 1, activation='sigmoid', padding='same',
                 name='rf_pred')(net)

    model = Model(model_base.input, net)

    # for layer in model.layers:
    #     if 'rb' in layer.name or 'rf_' in layer.name:
    #         layer.trainable = True
    #     else:
    #         layer.trainable = frontend_trainable

    model.compile(optimizer=Adam(lr=1e-4),
                  loss='binary_crossentropy',
                  metrics=['accuracy'])

    model.summary()
    #
    #    if(pretrained_weights):
    #    	model.load_weights(pretrained_weights)
    plot_model(model, to_file='refinenet.png', show_shapes=True)

    return model
Exemple #5
0
    def __init__(self,
                 height=180,
                 width=180,
                 batch_size=64,
                 max_epochs=6,
                 base_model='inceptionResnetV2',
                 num_classes=5270):
        self.height = height
        self.width = width
        self.batch_size = batch_size
        self.max_epochs = max_epochs
        self.base_model = base_model
        self.num_classes = num_classes

        self.make_category_tables()
        # Check if it works:
        print(self.cat2idx[1000012755], self.idx2cat[4])

        if not os.path.exists("train_offsets.csv"):
            self.read_bson_files()
        else:
            self.train_offsets_df = pd.DataFrame.from_csv("train_offsets.csv")

        if not os.path.exists("train_images.csv") or not os.path.exists(
                "val_images.csv"):
            self.train_val_split()
        self.data_generator()

        # models = Models(input_shape=(self.height, self.width, 3), classes=self.num_classes)
        # if self.base_model == 'vgg16':
        #     models.vgg16()
        # elif self.base_model == 'vgg19':
        #     models.vgg19()
        # elif self.base_model == 'resnet50':
        #     models.resnet50()
        # elif self.base_model == 'inceptionV3':
        #     models.inceptionV3()
        # else:
        #     print('Uknown base model')
        #     raise SystemExit
        #
        # models.compile(optimizer=RMSprop(lr=1e-4))
        # self.model = models.get_model()

        if self.base_model == 'resnet101':
            self.model = resnet101_model(self.height,
                                         self.width,
                                         color_type=3,
                                         num_classes=self.num_classes)
        elif self.base_model == 'resnet152':
            self.model = resnet152_model(self.height,
                                         self.width,
                                         color_type=3,
                                         num_classes=self.num_classes)
        else:
            models = Models(input_shape=(self.height, self.width, 3),
                            classes=self.num_classes)
            if self.base_model == 'inceptionV4':
                models.inceptionV3()
            elif self.base_model == 'inceptionResnetV2':
                models.inceptionResnetV2()
            sgd = SGD(lr=1e-4, decay=1e-6, momentum=0.9, nesterov=True)
            models.compile(optimizer=sgd)
            self.model = models.get_model()

        self.model.summary()
Exemple #6
0
    def test_ensemble(self):
        ''' test ensemble several different models '''
        model1 = resnet101_model(180,
                                 180,
                                 color_type=3,
                                 num_classes=self.num_classes,
                                 mode=0)
        model2 = resnet101_model(160,
                                 160,
                                 color_type=3,
                                 num_classes=self.num_classes,
                                 mode=1)
        # model3 = resnet152_model(160, 160, color_type=3, num_classes=self.num_classes)

        models = Models(input_shape=(180, 180, 3), classes=self.num_classes)
        models.inceptionResnetV2()
        model4 = models.get_model()

        model1.load_weights('../weights/best_weights_resnet101.hdf5')
        model2.load_weights('../weights/best_weights_resnet101_160crop.hdf5')
        # model3.load_weights('../weights/best_weights_resnet152_160crop.hdf5')
        model4.load_weights('../weights/best_weights_inceptionResnetV2.hdf5')

        submission_df = pd.read_csv(data_dir + "sample_submission.csv")
        submission_df.head()

        test_datagen_resnet = ImageDataGenerator(
            preprocessing_function=preprocess_input)
        test_datagen_inception = ImageDataGenerator(
            preprocessing_function=inception_preprocess_input)

        # models = [{"model": model1, "crop": False, "datagen": test_datagen_resnet},
        #           {"model": model2, "crop": True, "datagen": test_datagen_resnet},
        #           {"model": model4, "crop": False, "datagen": test_datagen_inception}]

        models = [{
            "model": model1,
            "crop": False,
            "datagen": test_datagen_resnet,
            "weight": 0.6
        }, {
            "model": model2,
            "crop": True,
            "datagen": test_datagen_resnet,
            "weight": 0.7
        }]

        data = bson.decode_file_iter(open(test_bson_path, "rb"))

        with tqdm(total=num_test_products) as pbar:
            for c, d in enumerate(data):
                num_imgs = len(d["imgs"])

                avg_pred = 0
                for model in models:
                    batch_x = []

                    for i in range(num_imgs):
                        bson_img = d["imgs"][i]["picture"]

                        # Load and preprocess the image.
                        img = load_img(
                            io.BytesIO(bson_img)
                        )  #, target_size=(self.height, self.width))
                        x = img_to_array(img)

                        batch_x.append(self.preprocess(x, model))
                    batch_x = np.array(batch_x, dtype=K.floatx())

                    prediction = model["model"].predict(batch_x,
                                                        batch_size=num_imgs)
                    avg_pred += model["weight"] * self.blending(
                        prediction, 'mean')
                cat_idx = np.argmax(avg_pred)
                submission_df.iloc[c]["category_id"] = self.idx2cat[cat_idx]
                pbar.update()
        submission_df.to_csv(
            "../submit/my_submission_ensemble{}.csv.gz".format(len(models)),
            compression="gzip",
            index=False)