def show(self, proj='moll', lon_0=180, tmap=None, coord=None):
     from mpl_toolkits.basemap import Basemap
     import pylab as plt
     import resources.figures as figures
     figures.set_fancy()
     if coord==None:
         ra = np.rad2deg(self.grid['points'][:,0])
         dec = np.rad2deg(self.grid['points'][:,1])
     else:
         ra = np.rad2deg(coord[:,0])
         dec = np.rad2deg(coord[:,1])
     
     fig = plt.figure()
     m = Basemap(projection=proj,lon_0=lon_0)#,celestial=True) # celestial=True inverses alpha (East towards the right)
     m.drawparallels(np.arange(-60.,90.,30.),labels=[1,0,0,0])
     m.drawmeridians(np.arange(0.,360.,30.))
     
     ra__ = np.arange(0., 360., 30.)
     x, y = m(ra__,ra__*0)
     for x,y,t in zip(x,y,ra__):
         plt.text(x, y, figures.format_degree(t), color='black', ha='center', weight='black', size='small') ##93c6ed
     if tmap==None:
         m.scatter(ra,dec,latlon=True,marker='x',s=20,cmap=plt.cm.binary)
     else:
         m.scatter(ra,dec,c=tmap,latlon=True,marker='x',s=20,cmap=plt.cm.binary)
     plt.show()
    def show(self, proj='moll', lon_0=180, tmap=None, coord=None):
        from mpl_toolkits.basemap import Basemap
        import pylab as plt
        import resources.figures as figures
        figures.set_fancy()
        if coord == None:
            ra = np.rad2deg(self.grid['points'][:, 0])
            dec = np.rad2deg(self.grid['points'][:, 1])
        else:
            ra = np.rad2deg(coord[:, 0])
            dec = np.rad2deg(coord[:, 1])

        fig = plt.figure()
        m = Basemap(
            projection=proj, lon_0=lon_0
        )  #,celestial=True) # celestial=True inverses alpha (East towards the right)
        m.drawparallels(np.arange(-60., 90., 30.), labels=[1, 0, 0, 0])
        m.drawmeridians(np.arange(0., 360., 30.))

        ra__ = np.arange(0., 360., 30.)
        x, y = m(ra__, ra__ * 0)
        for x, y, t in zip(x, y, ra__):
            plt.text(x,
                     y,
                     figures.format_degree(t),
                     color='black',
                     ha='center',
                     weight='black',
                     size='small')  ##93c6ed
        if tmap == None:
            m.scatter(ra,
                      dec,
                      latlon=True,
                      marker='x',
                      s=20,
                      cmap=plt.cm.binary)
        else:
            m.scatter(ra,
                      dec,
                      c=tmap,
                      latlon=True,
                      marker='x',
                      s=20,
                      cmap=plt.cm.binary)
        plt.show()
### #TODO if first minute look for past orbits anyways
print
worthy_targets = []
for ii in range(0, targets[0].CountObjects()):
	if np.shape(targets[ii].visible)[0] > 0:
		worthy_targets.append(targets[ii])
############################################################################

end = time.time()
elapsed_time = round((end-start)/60.,2)
sys.stdout.write( '\r'*len(message) )
sys.stdout.flush()
print "Time needed: %2.2f min" % elapsed_time

### Plot a few things
if fancy: figures.set_fancy()

### Plot time line
figures.set_fancy()

minute_ini = first_minute
minute_end = last_minute

maxy = len(worthy_targets)
print 'Number of star visible in period selected: %d' % maxy

size = 2 + maxy/3
figsize = (17.,size) # fig size in inches (width,height)
fig = plt.figure(figsize=figsize)
ax = plt.subplot(111)
# 	plt.scatter(target.Coordinates()[0]*180./np.pi,target.Coordinates()[1]*180./np.pi,c=c, cmap=cm.jet, vmin=np.amin(density), vmax=np.amax(density), edgecolor='none', s=50)

# plt.xlim([0,360])
# plt.ylim([-90,90])
# plt.grid()
# cb=plt.colorbar()
# cb.set_label('Probabilty of transit of min. %d hours' % transit_duration)

###########################################################################
### Plotting
# transform 0 into no plotting in the data matrix
mag_min = np.amin(data_grid[data_grid > 0])
data_grid[data_grid < mag_min] = np.nan

if fancy:
    figures.set_fancy()
fig = plt.figure()
axes = fig.add_subplot(1, 1, 1, axisbg="black")
m = Basemap(projection="moll", lon_0=180, resolution="c")

extent = (-np.pi, np.pi, -np.pi / 2.0, np.pi / 2.0)

ra_grid *= const.RAD
# ra_grid -= 180.
# ra_grid = ra_grid - 180 #= (ra_grid-np.pi)  #*180. / np.pi
dec_grid *= const.RAD

m.contour(ra_grid, dec_grid, data_grid, 10, colors="k", latlon=True)
CS = m.contourf(
    ra_grid, dec_grid, data_grid, int((mag_max - mag_min) / mag_sep + 1), cmap=plt.cm.gist_rainbow, latlon=True
)
dec_grid = data_ref['dec_grid']
ticks = data_ref['dec_grid']

ref = data_ref['data_grid']
other = data_other['data_grid']
whereAreNaNs = np.isnan(ref)
ref[whereAreNaNs] = 0
whereAreNaNs = np.isnan(other)
other[whereAreNaNs] = 0
delta = ref - other
#delta[delta == 0]=np.nan

### Plotting
# transform 0 into no plotting in the data matrix

if fancy: figures.set_fancy()
fig = plt.figure()
ax = plt.subplot(111)
#ax.set_aspect(2.)

plt.grid()
print np.amax(delta)
v = np.arange(min_val, max_val + step_scale, step_scale)
vl = np.arange(min_val, max_val + step_scale, 2)
CS = plt.contour(ra_grid, dec_grid, np.fliplr(delta), colors='k', levels=vl)

plt.clabel(CS, inline=1, fmt='%+d', colors='k', fontsize=12, ticks=v)

CS = plt.contourf(ra_grid,
                  dec_grid,
                  np.fliplr(delta),
Exemple #6
0
import resources.figures as figures
import numpy as np
import pylab as plt
# WARNING: This is an obselete version of the code...

pst = np.loadtxt('straylight_orbitID_p/INPUT/pst.dat')
print pst
figures.set_fancy()
fig = plt.figure()
plt.xlabel(r'$\theta$')
plt.ylabel('PST')
plt.semilogy(pst[:, 0], pst[:, 1], lw=2)
plt.plot([35, 35], [np.amin(pst[:, 1]), np.amax(pst[:, 1])], lw=3, color='r')
plt.grid()

figures.savefig('orbitID_figures/pst', fig, fancy=True)
plt.show()