Exemple #1
0
def CTR(arr, encrypt=True):
    '''
    Counter Mode is xoring the message with a encrypted counter (IV + incr(0))

    arr: array of bytearray of 8 bytes of data to encrypt/decrypt
    encrypt: true to encrypt
    '''

    if encrypt:
        iv = IV(arr)
    else:
        iv = IV_action(arr)

    res = []

    for i, message in enumerate(arr):
        config.WATCH_PERCENTAGE = ((len(arr) -
                                    (len(arr) - i)) / len(arr)) * 100
        exTime = time.time()

        noc = bm.byte_operation(iv, (i + 1).to_bytes(8, "big"), "XOR")
        kas = kasu.kasumi(noc, True)
        coded = bm.byte_operation(message, kas, "XOR")

        res.append(coded)

        config.WATCH_GLOBAL_CIPHER += time.time() - exTime
        config.WATCH_BLOC_CIPHER = config.WATCH_GLOBAL_CIPHER / (i + 1)
        config.WATCH_BLOC_KASUMI = config.WATCH_GLOBAL_KASUMI / (i + 1)

    if encrypt:
        # Adding the IV to the encrypted data
        IV_action(res, iv, "store")

    return res
Exemple #2
0
    def GHASH64(H, A, C, X, i):
        n = len(C)
        m = len(A)

        if i <= m:
            # A1 = A[1-1]
            return gz2.poly_mult_mod_2(
                bti(bm.byte_operation(X, A[i - 1], "XOR")), H, p)
        elif i <= m + n:
            return gz2.poly_mult_mod_2(
                bti(bm.byte_operation(X, C[i - m - 1], "XOR")), H, p)
        elif i == m + n + 1:
            return gz2.poly_mult_mod_2(
                bti(
                    bm.byte_operation(
                        gz2.poly_mult_mod_2(
                            bti(bm.byte_operation(X, lenb(A), "XOR")), H,
                            p).to_bytes(8, "big"), lenb(C), "XOR")), H, p)
Exemple #3
0
def CBC(arr, encrypt=True):
    """In CBC mode, each block of plaintext is XORed with the previous ciphertext block before being encrypted. """

    # Initialisation Vector
    if encrypt:
        iv = IV(arr)
    else:
        iv = IV_action(arr)

    res = []

    for i, message in enumerate(arr):

        config.WATCH_PERCENTAGE = ((len(arr) -
                                    (len(arr) - i)) / len(arr)) * 100
        exTime = time.time()

        if i == 0:
            # Initialization
            if encrypt:
                res.append(kasu.kasumi(bm.byte_operation(iv, message, "XOR")))
            else:
                res.append(
                    bm.byte_operation(kasu.kasumi(message, False), iv, "XOR"))
        else:
            if encrypt:
                res.append(
                    kasu.kasumi(bm.byte_operation(res[i - 1], message, "XOR")))
            else:
                res.append(
                    bm.byte_operation(kasu.kasumi(message, False), arr[i - 1],
                                      "XOR"))

        config.WATCH_GLOBAL_CIPHER += time.time() - exTime
        config.WATCH_BLOC_CIPHER = config.WATCH_GLOBAL_CIPHER / (i + 1)
        config.WATCH_BLOC_KASUMI = config.WATCH_GLOBAL_KASUMI / (i + 1)

    if encrypt:
        # Adding the IV to the encrypted data
        IV_action(res, iv, "store")
        return res
    else:
        return res
Exemple #4
0
def sponge(N:bytearray, d:int):
    """
    Sponge construction for hash functions.

    N: Thing to hash \n
    d: size of hash wanted \n

    return bytearray
    """

    def pad(N, r):
        iN = bm.bytes_to_int(N)
        lN = int.bit_length(iN)

        # Number of 0 to add
        b = (r - ((lN + 3) % r)) % r

        # Padding using the SHA-3 pattern 10*1: a 1 bit, followed by zero or more 0 bits (maximum r − 1) and a final 1 bit.
        op = ((iN | (1 << b + lN + 1)) << 1) ^ 1
        
        return bm.multitype_to_bytes(op)

    r = 8
    d = int(d/8)

    blocks = bm.splitBytes(pad(N, r*8), r)

    S = bytearray(16)

    # Absorbing
    for block in blocks:
        S[:r] = bm.byte_operation(S[:r], block)
        S = md5(S)

    O = bytearray()
    # Squeezing

    while len(O) < d:
        O += S[:r]
        S = md5(S)

    # Truncating with the desired length
    return O[:d]
Exemple #5
0
def GCM(arr, encrypt=True, aad=""):
    '''
    GCM is CTR mode with authentification of additional data (AAD) authenticated with multiplication in a Galois Field

    arr: array of bytearray of 8 bytes of data to encrypt/decrypt
    encrypt: boolean, true to encypt
    aad: string of additional authenticated data
    '''

    if encrypt:
        iv = IV(arr)
    else:
        iv = IV_action(arr)
        # Integrity Check Balue
        icv = IV_action(arr)

    # Additional authenticated data (AAD), which is denoted as A
    A = []

    if encrypt:
        if (aad != ""):
            aadc = aad.encode()

            if len(aadc) > 1 << 64:
                raise Exception("Too much AAD")

            A = bm.splitBytes(aadc, 8)
            A[-1] = bm.fill_byte(A[-1], 8)
    else:
        header = arr[0]
        epos = int.from_bytes(header, "big")
        A = arr[1:epos]
        arr = arr[epos:]

    # Encrypted message
    C = []

    # 1 + α + α3 + α4 + α64 - 64 field polynomial
    p = int(
        "10000000000000000000000000000000000000000000000000000000000001111", 2)

    def bti(b):
        return int.from_bytes(b, "big")

    def lenb(i):
        return (len(i) * 8).to_bytes(8, "big")

    def GHASH64(H, A, C, X, i):
        n = len(C)
        m = len(A)

        if i <= m:
            # A1 = A[1-1]
            return gz2.poly_mult_mod_2(
                bti(bm.byte_operation(X, A[i - 1], "XOR")), H, p)
        elif i <= m + n:
            return gz2.poly_mult_mod_2(
                bti(bm.byte_operation(X, C[i - m - 1], "XOR")), H, p)
        elif i == m + n + 1:
            return gz2.poly_mult_mod_2(
                bti(
                    bm.byte_operation(
                        gz2.poly_mult_mod_2(
                            bti(bm.byte_operation(X, lenb(A), "XOR")), H,
                            p).to_bytes(8, "big"), lenb(C), "XOR")), H, p)

    H = bti(kasu.kasumi(b'\x00' * 8))

    Y = GHASH64(H, b'', [iv], b'\x00', 1).to_bytes(8, "big")
    E0 = kasu.kasumi(Y)

    n = len(arr)
    m = len(A)

    # equivalent of CTR mode
    for i in range(n):
        config.WATCH_PERCENTAGE = (((n * 2 + m + 1) - ((n * 2 + m + 1) - i)) /
                                   (n * 2 + m + 1)) * 100
        exTime = time.time()

        # treats the rightmost 32bits of its argument as a nonnegative integer with the least significant bit on the right, and increments this value modulo 2^32
        Y = Y[:4] + (
            (int.from_bytes(Y[-4:], "big") + 1) % 1 << 32).to_bytes(4, "big")
        E = kasu.kasumi(Y)

        C.append(bm.byte_operation(arr[i], E, "XOR"))

        config.WATCH_GLOBAL_CIPHER += time.time() - exTime
        config.WATCH_BLOC_CIPHER = config.WATCH_GLOBAL_CIPHER / (i + 1)
        config.WATCH_BLOC_KASUMI = config.WATCH_GLOBAL_KASUMI / (i + 1)

    res = C

    # plaintext is in C when we decrypt, me must replace interaction with the ciphertext
    if not encrypt:
        C = arr

    # first init of X = GHASH64(i=0) = b'\x00'
    X = b'\x00'

    for i in range(n + m + 1):
        config.WATCH_PERCENTAGE = (((n * 2 + m + 1) - ((n * 2 + m + 1) -
                                                       (i + n))) /
                                   (n * 2 + m + 1)) * 100
        exTime = time.time()

        X = GHASH64(H, A, C, X, i + 1).to_bytes(8, "big")

        config.WATCH_GLOBAL_CIPHER += time.time() - exTime
        config.WATCH_BLOC_CIPHER = config.WATCH_GLOBAL_CIPHER / (i + 1)

    icvc = bm.byte_operation(E0, X, "XOR")

    if not encrypt:
        if icv != icvc:
            print(
                "\nWARNING: INTEGRITY CHECK CONTROL INCORRECT, AAD HAVE BEEN MODIFIED !!"
            )

    if encrypt:
        IV_action(res, icvc, "store")
        # Adding the IV to the encrypted data
        IV_action(res, iv, "store")

        header = (1 + len(A)).to_bytes(8, "big")
        res = [header] + A + res

    return res