Exemple #1
0
 def setupClass(cls):
     from results.results_discrete import Anes
     data = sm.datasets.anes96.load()
     cls.data = data
     exog = data.exog
     exog = sm.add_constant(exog, prepend=False)
     cls.res1 = MNLogit(data.endog, exog).fit(method="newton", disp=0)
     res2 = Anes()
     res2.mnlogit_basezero()
     cls.res2 = res2
 def setupClass(cls):
     from results.results_discrete import Anes
     data = sm.datasets.anes96.load()
     cls.data = data
     exog = data.exog
     exog = sm.add_constant(exog, prepend=False)
     cls.res1 = MNLogit(data.endog, exog).fit(method="newton", disp=0)
     res2 = Anes()
     res2.mnlogit_basezero()
     cls.res2 = res2
 def setupClass(cls):
     from results.results_discrete import Anes
     data = sm.datasets.anes96.load()
     exog = data.exog
     exog[:, 0] = np.log(exog[:, 0] + .1)
     exog = np.column_stack((exog[:, 0], exog[:, 2], exog[:, 5:8]))
     exog = sm.add_constant(exog)
     cls.res1 = MNLogit(data.endog, exog).fit(method="newton", disp=0)
     res2 = Anes()
     res2.mnlogit_basezero()
     cls.res2 = res2
 def setupClass(cls):
     from results.results_discrete import Anes
     data = sm.datasets.anes96.load()
     exog = data.exog
     exog[:,0] = np.log(exog[:,0] + .1)
     exog = np.column_stack((exog[:,0],exog[:,2],
         exog[:,5:8]))
     exog = sm.add_constant(exog)
     cls.res1 = MNLogit(data.endog, exog).fit(method="newton", disp=0)
     res2 = Anes()
     res2.mnlogit_basezero()
     cls.res2 = res2
Exemple #5
0
 def setupClass(cls):
     from results.results_discrete import Anes
     data = sm.datasets.anes96.load()
     cls.data = data
     exog = data.exog
     exog = sm.add_constant(exog, prepend=False)
     mymodel = MNLogit(data.endog, exog)
     cls.res1 = mymodel.fit(method="lbfgs", disp=0, maxiter=50000,
             #m=12, pgtol=1e-7, factr=1e3, # 5 failures
             #m=20, pgtol=1e-8, factr=1e2, # 3 failures
             #m=30, pgtol=1e-9, factr=1e1, # 1 failure
             m=40, pgtol=1e-10, factr=5e0,
             loglike_and_score=mymodel.loglike_and_score)
     res2 = Anes()
     res2.mnlogit_basezero()
     cls.res2 = res2