def showCortexImg(pV, nV, t):
    """Summary
    This function encapsulates the routine to generate rectified cortical views of 
    one opponent retinal ganglion cell type
    Args:
        pV (vector): Positive rectified imagevector
        nV (vector): Negative rectified imagevector
        t (int): Index position of opponent cell species
    
    Returns:
        mergecort: Return a merged image of all cortical opponent cells as a numpy image array
    """
    lpos = cort0.cort_image_left(
        retina_cuda.convert_from_Piotr(pV[:, t, :].astype(float)))
    rpos = cort0.cort_image_right(
        retina_cuda.convert_from_Piotr(pV[:, t, :].astype(float)))
    lneg = cort1.cort_image_left(
        retina_cuda.convert_from_Piotr(nV[:, t, :].astype(float)))
    rneg = cort1.cort_image_right(
        retina_cuda.convert_from_Piotr(nV[:, t, :].astype(float)))
    pos_cort_img = np.concatenate((np.rot90(lpos), np.rot90(rpos, k=3)),
                                  axis=1)
    neg_cort_img = np.concatenate((np.rot90(lneg), np.rot90(rneg, k=3)),
                                  axis=1)

    mergecort = np.concatenate((pos_cort_img, neg_cort_img), axis=1)
    return mergecort
def showBPImg(pV, nV, t):
    """Summary
    This function encapsulates the routine to generate rectified backprojected views of 
    one opponent retinal ganglion cell
    Args:
        pV (vector): Positive rectified imagevector
        nV (vector): Negative rectified imagevector
        t (int): Index position of opponent cell species
    Returns:
        merge: Return a merged image of all backprojected opponent cells as a numpy image array
    """

    inverse = ret0.inverse(
        retina_cuda.convert_from_Piotr(pV[:, t, :].astype(float)))
    inv_crop = retina.crop(inverse, int(img.shape[1] / 2),
                           int(img.shape[0] / 2), loc[0])

    inverse2 = ret1.inverse(
        retina_cuda.convert_from_Piotr(nV[:, t, :].astype(float)))
    inv_crop2 = retina.crop(inverse2, int(img.shape[1] / 2),
                            int(img.shape[0] / 2), dloc[0])
    cv2.putText(inv_crop, types[t] + " + ", (1, 270), font, 1, (0, 255, 255),
                2)
    cv2.putText(inv_crop2, types[t] + " - ", (1, 270), font, 1, (0, 255, 255),
                2)

    merge = np.concatenate((inv_crop, inv_crop2), axis=1)
    return merge
Exemple #3
0
def showBPImg(pV, nV):
    """Summary
    This function encapsulates the routine to generate rectified backprojected views of 
    all opponent retinal ganglion cells
    Args:
        pV (vector): Positive rectified imagevector
        nV (vector): Negative rectified imagevector
    
    Returns:
        merge: Return a merged image of all backprojected opponent cells as a numpy image array
    """
    # object arrays of the positive and negative images
    inv_crop = np.empty(8, dtype=object)
    inv_crop2 = np.empty(8, dtype=object)
    for i in range(8):
        # backprojection functions
        inverse = ret0.inverse(
            retina_cuda.convert_from_Piotr(pV[:, i, :].astype(float)))
        inv_crop[i] = retina.crop(inverse, int(img.shape[1] / 2),
                                  int(img.shape[0] / 2), loc[0])

        inverse2 = ret1.inverse(
            retina_cuda.convert_from_Piotr(nV[:, i, :].astype(float)))
        inv_crop2[i] = retina.crop(inverse2, int(img.shape[1] / 2),
                                   int(img.shape[0] / 2), dloc[0])
        cv2.putText(inv_crop[i], types[i] + " + ", (1, 270), font, 1,
                    (0, 255, 255), 2)
        cv2.putText(inv_crop2[i], types[i] + " - ", (1, 270), font, 1,
                    (0, 255, 255), 2)
    # stack all images into a grid
    posRG = np.vstack((inv_crop[:4]))
    negRG = np.vstack((inv_crop2[:4]))
    posYB = np.vstack((inv_crop[4:]))
    negYB = np.vstack((inv_crop2[4:]))
    merge = np.concatenate((posRG, negRG, posYB, negYB), axis=1)
    return merge
Exemple #4
0
def showCortexImg(pV, nV):
    """Summary
    This function encapsulates the routine to generate rectified cortical views of 
    all opponent retinal ganglion cells
    Args:
        pV (vector): Positive rectified imagevector
        nV (vector): Negative rectified imagevector
    
    Returns:
        mergecort: Return a merged image of all cortical opponent cells as a numpy image array
    """
    # object arrays of the positive and negative cortical images
    pos_cort_img = np.empty(8, dtype=object)
    neg_cort_img = np.empty(8, dtype=object)
    for i in range(8):
        # accelerated cortical mapping functions
        lpos = cort0.cort_image_left(
            retina_cuda.convert_from_Piotr(pV[:, i, :].astype(float)))
        rpos = cort0.cort_image_right(
            retina_cuda.convert_from_Piotr(pV[:, i, :].astype(float)))
        lneg = cort1.cort_image_left(
            retina_cuda.convert_from_Piotr(nV[:, i, :].astype(float)))
        rneg = cort1.cort_image_right(
            retina_cuda.convert_from_Piotr(nV[:, i, :].astype(float)))
        pos_cort_img[i] = np.concatenate((np.rot90(lpos), np.rot90(rpos, k=3)),
                                         axis=1)
        neg_cort_img[i] = np.concatenate((np.rot90(lneg), np.rot90(rneg, k=3)),
                                         axis=1)
    # stack all images into a grid
    posRGcort = np.vstack((pos_cort_img[:4]))
    negRGcort = np.vstack((neg_cort_img[:4]))
    posYBcort = np.vstack((pos_cort_img[4:]))
    negYBcort = np.vstack((neg_cort_img[4:]))
    mergecort = np.concatenate((posRGcort, negRGcort, posYBcort, negYBcort),
                               axis=1)
    return mergecort
Exemple #5
0
def showNonOpponency(C, theta):
    """Summary
    This function encapsulates the routine to generate backprojected and cortical views for 
    the magnocellular pathway retinal ganglion cells
    Args:
        C (vector): The sharp retina is passed to the function
        theta (float): A threshold value is passed to the function
    
    Returns:
        merged: Return a merged image of the backprojected view as a numpy image array
        mergecort: Return a merged image of the cortical view as a numpy image array
    """
    # Sample using accelerated retina function
    S = ret1.sample(lateimg)  # SURROUND
    S = retina_cuda.convert_to_Piotr(S)
    #showretina:
    #return the modified,rectified imagevectors
    ncentreV, nsurrV = rgc.nonopponency(C, S, theta)
    # generate packprojected images
    ninverse = ret0.inverse(
        retina_cuda.convert_from_Piotr(ncentreV.astype(float)))
    ninv_crop = retina.crop(ninverse, int(img.shape[1] / 2),
                            int(img.shape[0] / 2), loc[0])

    ninverse2 = ret1.inverse(
        retina_cuda.convert_from_Piotr(nsurrV.astype(float)))
    ninv_crop2 = retina.crop(ninverse2, int(img.shape[1] / 2),
                             int(img.shape[0] / 2), dloc[0])
    # place descriptive text onto generated images
    cv2.putText(ninv_crop, "R+G + ", (1, 270), font, 1, (0, 255, 255), 2)
    cv2.putText(ninv_crop2, "R+G - ", (1, 270), font, 1, (0, 255, 255), 2)

    merged = np.concatenate((ninv_crop, ninv_crop2), axis=1)

    #showcortex
    ## create cortical maps of the imagevectors using accelerated functions
    lposnon = cort0.cort_image_left(
        retina_cuda.convert_from_Piotr(ncentreV.astype(float)))
    rposnon = cort0.cort_image_right(
        retina_cuda.convert_from_Piotr(ncentreV.astype(float)))
    lnegnon = cort1.cort_image_left(
        retina_cuda.convert_from_Piotr(nsurrV.astype(float)))
    rnegnon = cort1.cort_image_right(
        retina_cuda.convert_from_Piotr(nsurrV.astype(float)))
    pos_cort_img_non = np.concatenate(
        (np.rot90(lposnon), np.rot90(rposnon, k=3)), axis=1)
    neg_cort_img_non = np.concatenate(
        (np.rot90(lnegnon), np.rot90(rnegnon, k=3)), axis=1)
    # merge left and right hemispheres
    mergedcortex = np.concatenate((pos_cort_img_non, neg_cort_img_non), axis=1)
    return merged, mergedcortex