Exemple #1
0
def dump(options):
    """
  :param options: argparse.Namespace
  """
    print("Epoch: %i" % options.epoch, file=log.v3)
    dataset.init_seq_order(options.epoch)

    stats = Stats()
    output = engine.network.get_layer(
        options.layer).output.copy_as_batch_major()

    def _extra_fetches_cb(inputs, **kwargs):
        n_batch = inputs.shape[0]
        # noinspection PyShadowingNames
        seq_len = {
            i: kwargs["seq_len_%i" % i]
            for i in output.size_placeholder.keys()
        }
        assert all([len(v) == n_batch for v in seq_len.values()])
        assert set(seq_len.keys()) == {0}  # not implemented otherwise
        for n in range(n_batch):
            stats.collect(inputs[n, :seq_len[0][n]])

    extra_fetches = {
        'inputs': output.placeholder,
    }
    for i, seq_len in output.size_placeholder.items():
        extra_fetches["seq_len_%i" % i] = seq_len
    batches = dataset.generate_batches(
        recurrent_net=True,  # Want seq lengths
        batch_size=config.typed_value('batch_size', 1),
        max_seqs=config.int('max_seqs', -1),
        used_data_keys=engine.network.get_used_data_keys())
    forwarder = Runner(engine=engine,
                       dataset=dataset,
                       batches=batches,
                       train=False,
                       eval=False,
                       extra_fetches=extra_fetches,
                       extra_fetches_callback=_extra_fetches_cb)
    forwarder.run(report_prefix="forward")
    if not forwarder.finalized:
        print("Error happened. Exit now.")
        sys.exit(1)
    stats.dump(output_file_prefix=options.dump_stats,
               stream_prefix="Layer %r " % options.layer)
Exemple #2
0
def get_raw_strings(dataset, options):
    """
  :param Dataset dataset:
  :param options: argparse.Namespace
  :return: list of (seq tag, string)
  :rtype: list[(str,str)]
  """
    refs = []
    start_time = time.time()
    seq_len_stats = Stats()
    seq_idx = options.startseq
    if options.endseq < 0:
        options.endseq = float("inf")
    interactive = util.is_tty() and not log.verbose[5]
    print("Iterating over %r." % dataset, file=log.v2)
    while dataset.is_less_than_num_seqs(seq_idx) and seq_idx <= options.endseq:
        dataset.load_seqs(seq_idx, seq_idx + 1)
        complete_frac = dataset.get_complete_frac(seq_idx)
        start_elapsed = time.time() - start_time
        try:
            num_seqs_s = str(dataset.num_seqs)
        except NotImplementedError:
            try:
                num_seqs_s = "~%i" % dataset.estimated_num_seqs
            except TypeError:  # a number is required, not NoneType
                num_seqs_s = "?"
        progress_prefix = "%i/%s" % (
            seq_idx,
            num_seqs_s,
        )
        progress = "%s (%.02f%%)" % (progress_prefix, complete_frac * 100)
        if complete_frac > 0:
            total_time_estimated = start_elapsed / complete_frac
            remaining_estimated = total_time_estimated - start_elapsed
            progress += " (%s)" % hms(remaining_estimated)
        seq_tag = dataset.get_tag(seq_idx)
        assert isinstance(seq_tag, str)
        ref = dataset.get_data(seq_idx, options.key)
        if isinstance(ref, numpy.ndarray):
            assert ref.shape == () or (ref.ndim == 1
                                       and ref.dtype == numpy.uint8)
            if ref.shape == ():
                ref = ref.flatten()[0]  # get the entry itself (str or bytes)
            else:
                ref = ref.tobytes()
        if isinstance(ref, bytes):
            ref = ref.decode("utf8")
        assert isinstance(ref, str)
        seq_len_stats.collect([len(ref)])
        refs.append((seq_tag, ref))
        if interactive:
            util.progress_bar_with_time(complete_frac, prefix=progress_prefix)
        elif log.verbose[5]:
            print(progress_prefix,
                  "seq tag %r, ref len %i chars" % (seq_tag, len(ref)))
        seq_idx += 1
    print("Done. Num seqs %i. Total time %s." %
          (seq_idx, hms(time.time() - start_time)),
          file=log.v1)
    print("More seqs which we did not dumped: %s." %
          (dataset.is_less_than_num_seqs(seq_idx), ),
          file=log.v1)
    seq_len_stats.dump(stream_prefix="Seq-length %r " % (options.key, ),
                       stream=log.v2)
    return refs
def main(argv):
    """
  Main entry.
  """
    argparser = argparse.ArgumentParser(description=__doc__)
    argparser.add_argument("config_file",
                           type=str,
                           help="RETURNN config, or model-dir")
    argparser.add_argument("--epoch", type=int)
    argparser.add_argument(
        '--data',
        default="train",
        help=
        "e.g. 'train', 'config:train', or sth like 'config:get_dataset('dev')'"
    )
    argparser.add_argument('--do_search', default=False, action='store_true')
    argparser.add_argument('--beam_size', default=12, type=int)
    argparser.add_argument('--dump_dir', help="for npy or png")
    argparser.add_argument("--output_file", help="hdf")
    argparser.add_argument("--device", help="gpu or cpu (default: automatic)")
    argparser.add_argument("--layers",
                           default=["att_weights"],
                           action="append",
                           help="Layer of subnet to grab")
    argparser.add_argument("--rec_layer",
                           default="output",
                           help="Subnet layer to grab from; decoder")
    argparser.add_argument("--enc_layer", default="encoder")
    argparser.add_argument("--batch_size", type=int, default=5000)
    argparser.add_argument("--seq_list",
                           default=[],
                           action="append",
                           help="predefined list of seqs")
    argparser.add_argument("--min_seq_len",
                           default="0",
                           help="can also be dict")
    argparser.add_argument("--num_seqs",
                           default=-1,
                           type=int,
                           help="stop after this many seqs")
    argparser.add_argument("--output_format",
                           default="npy",
                           help="npy, png or hdf")
    argparser.add_argument("--dropout",
                           default=None,
                           type=float,
                           help="if set, overwrites all dropout values")
    argparser.add_argument("--train_flag", action="store_true")
    argparser.add_argument("--reset_partition_epoch", type=int, default=1)
    argparser.add_argument("--reset_seq_ordering", default="sorted_reverse")
    argparser.add_argument("--reset_epoch_wise_filter", default=None)
    args = argparser.parse_args(argv[1:])

    layers = args.layers
    assert isinstance(layers, list)
    config_fn = args.config_file
    explicit_model_dir = None
    if os.path.isdir(config_fn):
        # Assume we gave a model dir.
        explicit_model_dir = config_fn
        train_log_dir_config_pattern = "%s/train-*/*.config" % config_fn
        train_log_dir_configs = sorted(glob(train_log_dir_config_pattern))
        assert train_log_dir_configs
        config_fn = train_log_dir_configs[-1]
        print("Using this config via model dir:", config_fn)
    else:
        assert os.path.isfile(config_fn)
    model_name = ".".join(config_fn.split("/")[-1].split(".")[:-1])

    init_returnn(config_fn=config_fn, args=args)
    if explicit_model_dir:
        config.set(
            "model", "%s/%s" %
            (explicit_model_dir, os.path.basename(config.value('model', ''))))
    print("Model file prefix:", config.value('model', ''))

    if args.do_search:
        raise NotImplementedError
    min_seq_length = NumbersDict(eval(args.min_seq_len))

    assert args.output_format in ["npy", "png", "hdf"]
    if args.output_format in ["npy", "png"]:
        assert args.dump_dir
        if not os.path.exists(args.dump_dir):
            os.makedirs(args.dump_dir)
    plt = ticker = None
    if args.output_format == "png":
        import matplotlib.pyplot as plt  # need to import early? https://stackoverflow.com/a/45582103/133374
        import matplotlib.ticker as ticker

    dataset_str = args.data
    if dataset_str in ["train", "dev", "eval"]:
        dataset_str = "config:%s" % dataset_str
    extra_dataset_kwargs = {}
    if args.reset_partition_epoch:
        print("NOTE: We are resetting partition epoch to %i." %
              (args.reset_partition_epoch, ))
        extra_dataset_kwargs["partition_epoch"] = args.reset_partition_epoch
    if args.reset_seq_ordering:
        print("NOTE: We will use %r seq ordering." %
              (args.reset_seq_ordering, ))
        extra_dataset_kwargs["seq_ordering"] = args.reset_seq_ordering
    if args.reset_epoch_wise_filter:
        extra_dataset_kwargs["epoch_wise_filter"] = eval(
            args.reset_epoch_wise_filter)
    dataset = init_dataset(dataset_str, extra_kwargs=extra_dataset_kwargs)
    if hasattr(dataset,
               "epoch_wise_filter") and args.reset_epoch_wise_filter is None:
        if dataset.epoch_wise_filter:
            print("NOTE: Resetting epoch_wise_filter to None.")
            dataset.epoch_wise_filter = None
    if args.reset_partition_epoch:
        assert dataset.partition_epoch == args.reset_partition_epoch
    if args.reset_seq_ordering:
        assert dataset.seq_ordering == args.reset_seq_ordering

    init_net(args, layers)
    network = rnn.engine.network

    hdf_writer = None
    if args.output_format == "hdf":
        assert args.output_file
        assert len(layers) == 1
        sub_layer = network.get_layer("%s/%s" % (args.rec_layer, layers[0]))
        from returnn.datasets.hdf import SimpleHDFWriter
        hdf_writer = SimpleHDFWriter(filename=args.output_file,
                                     dim=sub_layer.output.dim,
                                     ndim=sub_layer.output.ndim)

    extra_fetches = {
        "output":
        network.layers[args.rec_layer].output.get_placeholder_as_batch_major(),
        "output_len":
        network.layers[
            args.rec_layer].output.get_sequence_lengths(),  # decoder length
        "encoder_len":
        network.layers[
            args.enc_layer].output.get_sequence_lengths(),  # encoder length
        "seq_idx":
        network.get_extern_data("seq_idx"),
        "seq_tag":
        network.get_extern_data("seq_tag"),
        "target_data":
        network.get_extern_data(network.extern_data.default_input),
        "target_classes":
        network.get_extern_data(network.extern_data.default_target),
    }
    for layer in layers:
        sub_layer = rnn.engine.network.get_layer("%s/%s" %
                                                 (args.rec_layer, layer))
        extra_fetches[
            "rec_%s" %
            layer] = sub_layer.output.get_placeholder_as_batch_major()
    dataset.init_seq_order(
        epoch=1, seq_list=args.seq_list
        or None)  # use always epoch 1, such that we have same seqs
    dataset_batch = dataset.generate_batches(
        recurrent_net=network.recurrent,
        batch_size=args.batch_size,
        max_seqs=rnn.engine.max_seqs,
        max_seq_length=sys.maxsize,
        min_seq_length=min_seq_length,
        max_total_num_seqs=args.num_seqs,
        used_data_keys=network.used_data_keys)

    stats = {layer: Stats() for layer in layers}

    # (**dict[str,numpy.ndarray|str|list[numpy.ndarray|str])->None
    def fetch_callback(seq_idx, seq_tag, target_data, target_classes, output,
                       output_len, encoder_len, **kwargs):
        """
    :param list[int] seq_idx: len is n_batch
    :param list[str] seq_tag: len is n_batch
    :param numpy.ndarray target_data: extern data default input (e.g. "data"), shape e.g. (B,enc-T,...)
    :param numpy.ndarray target_classes: extern data default target (e.g. "classes"), shape e.g. (B,dec-T,...)
    :param numpy.ndarray output: rec layer output, shape e.g. (B,dec-T,...)
    :param numpy.ndarray output_len: rec layer seq len, i.e. decoder length, shape (B,)
    :param numpy.ndarray encoder_len: encoder seq len, shape (B,)
    :param kwargs: contains "rec_%s" % l for l in layers, the sub layers (e.g att weights) we are interested in
    """
        n_batch = len(seq_idx)
        for i in range(n_batch):
            # noinspection PyShadowingNames
            for layer in layers:
                att_weights = kwargs["rec_%s" % layer][i]
                stats[layer].collect(att_weights.flatten())
        if args.output_format == "npy":
            data = {}
            for i in range(n_batch):
                data[i] = {
                    'tag': seq_tag[i],
                    'data': target_data[i],
                    'classes': target_classes[i],
                    'output': output[i],
                    'output_len': output_len[i],
                    'encoder_len': encoder_len[i],
                }
                # noinspection PyShadowingNames
                for layer in [("rec_%s" % layer) for layer in layers]:
                    assert layer in kwargs
                    out = kwargs[layer][i]
                    assert out.ndim >= 2
                    assert out.shape[0] >= output_len[i] and out.shape[
                        1] >= encoder_len[i]
                    data[i][layer] = out[:output_len[i], :encoder_len[i]]
                fname = args.dump_dir + '/%s_ep%03d_data_%i_%i.npy' % (
                    model_name, rnn.engine.epoch, seq_idx[0], seq_idx[-1])
                np.save(fname, data)
        elif args.output_format == "png":
            for i in range(n_batch):
                # noinspection PyShadowingNames
                for layer in layers:
                    extra_postfix = ""
                    if args.dropout is not None:
                        extra_postfix += "_dropout%.2f" % args.dropout
                    elif args.train_flag:
                        extra_postfix += "_train"
                    fname = args.dump_dir + '/%s_ep%03d_plt_%05i_%s%s.png' % (
                        model_name, rnn.engine.epoch, seq_idx[i], layer,
                        extra_postfix)
                    att_weights = kwargs["rec_%s" % layer][i]
                    att_weights = att_weights.squeeze(axis=2)  # (out,enc)
                    assert att_weights.shape[0] >= output_len[
                        i] and att_weights.shape[1] >= encoder_len[i]
                    att_weights = att_weights[:output_len[i], :encoder_len[i]]
                    print("Seq %i, %s: Dump att weights with shape %r to: %s" %
                          (seq_idx[i], seq_tag[i], att_weights.shape, fname))
                    plt.matshow(att_weights)
                    title = seq_tag[i]
                    if dataset.can_serialize_data(
                            network.extern_data.default_target):
                        title += "\n" + dataset.serialize_data(
                            network.extern_data.default_target,
                            target_classes[i][:output_len[i]])
                        ax = plt.gca()
                        tick_labels = [
                            dataset.serialize_data(
                                network.extern_data.default_target,
                                np.array([x], dtype=target_classes[i].dtype))
                            for x in target_classes[i][:output_len[i]]
                        ]
                        ax.set_yticklabels([''] + tick_labels, fontsize=8)
                        ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
                    plt.title(title)
                    plt.savefig(fname)
                    plt.close()
        elif args.output_format == "hdf":
            assert len(layers) == 1
            att_weights = kwargs["rec_%s" % layers[0]]
            hdf_writer.insert_batch(inputs=att_weights,
                                    seq_len={
                                        0: output_len,
                                        1: encoder_len
                                    },
                                    seq_tag=seq_tag)
        else:
            raise Exception("output format %r" % args.output_format)

    runner = Runner(engine=rnn.engine,
                    dataset=dataset,
                    batches=dataset_batch,
                    train=False,
                    train_flag=bool(args.dropout) or args.train_flag,
                    extra_fetches=extra_fetches,
                    extra_fetches_callback=fetch_callback)
    runner.run(report_prefix="att-weights epoch %i" % rnn.engine.epoch)
    for layer in layers:
        stats[layer].dump(stream_prefix="Layer %r " % layer)
    if not runner.finalized:
        print("Some error occured, not finalized.")
        sys.exit(1)

    if hdf_writer:
        hdf_writer.close()
    rnn.finalize()
def calc_wer_on_dataset(dataset, refs, options, hyps):
    """
  :param Dataset|None dataset:
  :param dict[str,str]|None refs: seq tag -> ref string (words delimited by space)
  :param options: argparse.Namespace
  :param dict[str,str] hyps: seq tag -> hyp string (words delimited by space)
  :return: WER
  :rtype: float
  """
    assert dataset or refs
    start_time = time.time()
    seq_len_stats = {"refs": Stats(), "hyps": Stats()}
    seq_idx = options.startseq
    if options.endseq < 0:
        options.endseq = float("inf")
    wer = 1.0
    remaining_hyp_seq_tags = set(hyps.keys())
    interactive = util.is_tty() and not log.verbose[5]
    collected = {"hyps": [], "refs": []}
    max_num_collected = 1
    if dataset:
        dataset.init_seq_order(epoch=1)
    else:
        refs = sorted(refs.items(), key=lambda item: len(item[1]))
    while True:
        if seq_idx > options.endseq:
            break
        if dataset:
            if not dataset.is_less_than_num_seqs(seq_idx):
                break
            dataset.load_seqs(seq_idx, seq_idx + 1)
            complete_frac = dataset.get_complete_frac(seq_idx)
            seq_tag = dataset.get_tag(seq_idx)
            assert isinstance(seq_tag, str)
            ref = dataset.get_data(seq_idx, options.key)
            if isinstance(ref, numpy.ndarray):
                assert ref.shape == ()
                ref = ref.flatten()[0]  # get the entry itself (str or bytes)
            if isinstance(ref, bytes):
                ref = ref.decode("utf8")
            assert isinstance(ref, str)
            try:
                num_seqs_s = str(dataset.num_seqs)
            except NotImplementedError:
                try:
                    num_seqs_s = "~%i" % dataset.estimated_num_seqs
                except TypeError:  # a number is required, not NoneType
                    num_seqs_s = "?"
        else:
            if seq_idx >= len(refs):
                break
            complete_frac = (seq_idx + 1) / float(len(refs))
            seq_tag, ref = refs[seq_idx]
            assert isinstance(seq_tag, str)
            assert isinstance(ref, str)
            num_seqs_s = str(len(refs))

        start_elapsed = time.time() - start_time
        progress_prefix = "%i/%s (WER %.02f%%)" % (seq_idx, num_seqs_s,
                                                   wer * 100)
        progress = "%s (%.02f%%)" % (progress_prefix, complete_frac * 100)
        if complete_frac > 0:
            total_time_estimated = start_elapsed / complete_frac
            remaining_estimated = total_time_estimated - start_elapsed
            progress += " (%s)" % hms(remaining_estimated)

        remaining_hyp_seq_tags.remove(seq_tag)
        hyp = hyps[seq_tag]
        seq_len_stats["hyps"].collect([len(hyp)])
        seq_len_stats["refs"].collect([len(ref)])
        collected["hyps"].append(hyp)
        collected["refs"].append(ref)

        if len(collected["hyps"]) >= max_num_collected:
            wer = wer_compute.step(session, **collected)
            del collected["hyps"][:]
            del collected["refs"][:]

        if interactive:
            util.progress_bar_with_time(complete_frac, prefix=progress_prefix)
        elif log.verbose[5]:
            print(
                progress_prefix, "seq tag %r, ref/hyp len %i/%i chars" %
                (seq_tag, len(ref), len(hyp)))
        seq_idx += 1
    if len(collected["hyps"]) > 0:
        wer = wer_compute.step(session, **collected)
    print("Done. Num seqs %i. Total time %s." %
          (seq_idx, hms(time.time() - start_time)),
          file=log.v1)
    print("Remaining num hyp seqs %i." % (len(remaining_hyp_seq_tags), ),
          file=log.v1)
    if dataset:
        print("More seqs which we did not dumped: %s." %
              dataset.is_less_than_num_seqs(seq_idx),
              file=log.v1)
    for key in ["hyps", "refs"]:
        seq_len_stats[key].dump(stream_prefix="Seq-length %r %r " %
                                (key, options.key),
                                stream=log.v2)
    if options.expect_full:
        assert not remaining_hyp_seq_tags, "There are still remaining hypotheses."
    return wer
Exemple #5
0
def dump_dataset(dataset, options):
    """
  :type dataset: Dataset.Dataset
  :param options: argparse.Namespace
  """
    print("Epoch: %i" % options.epoch, file=log.v3)
    dataset.init_seq_order(epoch=options.epoch)
    print("Dataset keys:", dataset.get_data_keys(), file=log.v3)
    print("Dataset target keys:", dataset.get_target_list(), file=log.v3)
    assert options.key in dataset.get_data_keys()

    if options.get_num_seqs:
        print("Get num seqs.")
        print("estimated_num_seqs: %r" % dataset.estimated_num_seqs)
        try:
            print("num_seqs: %r" % dataset.num_seqs)
        except Exception as exc:
            print("num_seqs exception %r, which is valid, so we count." % exc)
            seq_idx = 0
            if dataset.get_target_list():
                default_target = dataset.get_target_list()[0]
            else:
                default_target = None
            while dataset.is_less_than_num_seqs(seq_idx):
                dataset.load_seqs(seq_idx, seq_idx + 1)
                if seq_idx % 10000 == 0:
                    if default_target:
                        targets = dataset.get_targets(default_target, seq_idx)
                        postfix = " (targets = %r...)" % (targets[:10], )
                    else:
                        postfix = ""
                    print("%i ...%s" % (seq_idx, postfix))
                seq_idx += 1
            print("accumulated num seqs: %i" % seq_idx)
        print("Done.")
        return

    dump_file = None
    if options.type == "numpy":
        print("Dump files: %r*%r" %
              (options.dump_prefix, options.dump_postfix),
              file=log.v3)
    elif options.type == "stdout":
        print("Dump to stdout", file=log.v3)
        if options.stdout_limit is not None:
            util.set_pretty_print_default_limit(options.stdout_limit)
            numpy.set_printoptions(
                threshold=sys.maxsize if options.stdout_limit ==
                float("inf") else int(options.stdout_limit))
        if options.stdout_as_bytes:
            util.set_pretty_print_as_bytes(options.stdout_as_bytes)
    elif options.type == "print_tag":
        print("Dump seq tag to stdout", file=log.v3)
    elif options.type == "dump_tag":
        dump_file = open("%sseq-tags.txt" % options.dump_prefix, "w")
        print("Dump seq tag to file: %s" % (dump_file.name, ), file=log.v3)
    elif options.type == "dump_seq_len":
        dump_file = open("%sseq-lens.txt" % options.dump_prefix, "w")
        print("Dump seq lens to file: %s" % (dump_file.name, ), file=log.v3)
        dump_file.write("{\n")
    elif options.type == "print_shape":
        print("Dump shape to stdout", file=log.v3)
    elif options.type == "plot":
        print("Plot.", file=log.v3)
    elif options.type == "interactive":
        print("Interactive debug shell.", file=log.v3)
    elif options.type == "null":
        if options.dump_stats:
            print("No dump (except stats).")
        else:
            print("No dump.")
    else:
        raise Exception("unknown dump option type %r" % options.type)

    start_time = time.time()
    stats = Stats() if (options.stats or options.dump_stats) else None
    seq_len_stats = {key: Stats() for key in dataset.get_data_keys()}
    seq_idx = options.startseq
    if options.endseq < 0:
        options.endseq = float("inf")
    while dataset.is_less_than_num_seqs(seq_idx) and seq_idx <= options.endseq:
        dataset.load_seqs(seq_idx, seq_idx + 1)
        complete_frac = dataset.get_complete_frac(seq_idx)
        start_elapsed = time.time() - start_time
        try:
            num_seqs_s = str(dataset.num_seqs)
        except NotImplementedError:
            try:
                num_seqs_s = "~%i" % dataset.estimated_num_seqs
            except TypeError:  # a number is required, not NoneType
                num_seqs_s = "?"
        progress_prefix = "%i/%s" % (seq_idx, num_seqs_s)
        progress = "%s (%.02f%%)" % (progress_prefix, complete_frac * 100)
        data = None
        if complete_frac > 0:
            total_time_estimated = start_elapsed / complete_frac
            remaining_estimated = total_time_estimated - start_elapsed
            progress += " (%s)" % hms(remaining_estimated)
        if options.type == "print_tag":
            print(
                "seq %s tag:" %
                (progress if log.verbose[2] else progress_prefix),
                dataset.get_tag(seq_idx))
        elif options.type == "dump_tag":
            print(
                "seq %s tag:" %
                (progress if log.verbose[2] else progress_prefix),
                dataset.get_tag(seq_idx))
            dump_file.write("%s\n" % dataset.get_tag(seq_idx))
        elif options.type == "dump_seq_len":
            seq_len = dataset.get_seq_length(seq_idx)[options.key]
            print(
                "seq %s tag:" %
                (progress if log.verbose[2] else progress_prefix),
                dataset.get_tag(seq_idx), "%r len:" % options.key, seq_len)
            dump_file.write("%r: %r,\n" % (dataset.get_tag(seq_idx), seq_len))
        else:
            data = dataset.get_data(seq_idx, options.key)
            if options.type == "numpy":
                numpy.savetxt(
                    "%s%i.data%s" %
                    (options.dump_prefix, seq_idx, options.dump_postfix), data)
            elif options.type == "stdout":
                print("seq %s tag:" % progress, dataset.get_tag(seq_idx))
                print("seq %s data:" % progress, pretty_print(data))
            elif options.type == "print_shape":
                print("seq %s data shape:" % progress, data.shape)
            elif options.type == "plot":
                plot(data)
            for target in dataset.get_target_list():
                targets = dataset.get_targets(target, seq_idx)
                if options.type == "numpy":
                    numpy.savetxt("%s%i.targets.%s%s" %
                                  (options.dump_prefix, seq_idx, target,
                                   options.dump_postfix),
                                  targets,
                                  fmt='%i')
                elif options.type == "stdout":
                    extra = ""
                    if target in dataset.labels and len(
                            dataset.labels[target]) > 1:
                        assert dataset.can_serialize_data(target)
                        extra += " (%r)" % dataset.serialize_data(key=target,
                                                                  data=targets)
                    print("seq %i target %r: %s%s" %
                          (seq_idx, target, pretty_print(targets), extra))
                elif options.type == "print_shape":
                    print("seq %i target %r shape:" % (seq_idx, target),
                          targets.shape)
            if options.type == "interactive":
                from returnn.util.debug import debug_shell
                debug_shell(locals())
        seq_len = dataset.get_seq_length(seq_idx)
        for key in dataset.get_data_keys():
            seq_len_stats[key].collect([seq_len[key]])
        if stats:
            stats.collect(data)
        if options.type == "null":
            util.progress_bar_with_time(complete_frac, prefix=progress_prefix)

        seq_idx += 1

    print("Done. Total time %s. More seqs which we did not dumped: %s" %
          (hms_fraction(time.time() - start_time),
           dataset.is_less_than_num_seqs(seq_idx)),
          file=log.v2)
    for key in dataset.get_data_keys():
        seq_len_stats[key].dump(stream_prefix="Seq-length %r " % key,
                                stream=log.v2)
    if stats:
        stats.dump(output_file_prefix=options.dump_stats,
                   stream_prefix="Data %r " % options.key,
                   stream=log.v1)
    if options.type == "dump_seq_len":
        dump_file.write("}\n")
    if dump_file:
        print("Dumped to file:", dump_file.name, file=log.v2)
        dump_file.close()
def analyze_dataset(options):
    """
  :param options: argparse.Namespace
  """
    print("Epoch: %i" % options.epoch, file=log.v3)
    print("Dataset keys:", dataset.get_data_keys(), file=log.v3)
    print("Dataset target keys:", dataset.get_target_list(), file=log.v3)
    assert options.key in dataset.get_data_keys()

    terminal_width, _ = util.terminal_size()
    show_interactive_process_bar = (log.verbose[3] and (not log.verbose[5])
                                    and terminal_width >= 0)

    start_time = time.time()
    num_seqs_stats = Stats()
    if options.endseq < 0:
        options.endseq = float("inf")

    recurrent = True
    used_data_keys = dataset.get_data_keys()
    batch_size = config.typed_value('batch_size', 1)
    max_seqs = config.int('max_seqs', -1)
    seq_drop = config.float('seq_drop', 0.0)
    max_seq_length = config.typed_value(
        'max_seq_length', None) or config.float('max_seq_length', 0)
    max_pad_size = config.typed_value("max_pad_size", None)

    batches = dataset.generate_batches(recurrent_net=recurrent,
                                       batch_size=batch_size,
                                       max_seqs=max_seqs,
                                       max_seq_length=max_seq_length,
                                       max_pad_size=max_pad_size,
                                       seq_drop=seq_drop,
                                       used_data_keys=used_data_keys)

    step = 0
    total_num_seqs = 0
    total_num_frames = NumbersDict()
    total_num_used_frames = NumbersDict()

    try:
        while batches.has_more():
            # See FeedDictDataProvider.
            batch, = batches.peek_next_n(1)
            assert isinstance(batch, Batch)
            if batch.start_seq > options.endseq:
                break
            dataset.load_seqs(batch.start_seq, batch.end_seq)
            complete_frac = batches.completed_frac()
            start_elapsed = time.time() - start_time
            try:
                num_seqs_s = str(dataset.num_seqs)
            except NotImplementedError:
                try:
                    num_seqs_s = "~%i" % dataset.estimated_num_seqs
                except TypeError:  # a number is required, not NoneType
                    num_seqs_s = "?"
            progress_prefix = "%i/%s" % (batch.start_seq, num_seqs_s)
            progress = "%s (%.02f%%)" % (progress_prefix, complete_frac * 100)
            if complete_frac > 0:
                total_time_estimated = start_elapsed / complete_frac
                remaining_estimated = total_time_estimated - start_elapsed
                progress += " (%s)" % hms(remaining_estimated)

            batch_max_time = NumbersDict.max(
                [seq.frame_length for seq in batch.seqs]) * len(batch.seqs)
            batch_num_used_frames = sum(
                [seq.frame_length for seq in batch.seqs], NumbersDict())
            total_num_seqs += len(batch.seqs)
            num_seqs_stats.collect(numpy.array([len(batch.seqs)]))
            total_num_frames += batch_max_time
            total_num_used_frames += batch_num_used_frames

            print("%s, batch %i, num seqs %i, frames %s, used %s (%s)" %
                  (progress, step, len(
                      batch.seqs), batch_max_time, batch_num_used_frames,
                   batch_num_used_frames / batch_max_time),
                  file=log.v5)
            if show_interactive_process_bar:
                util.progress_bar_with_time(complete_frac,
                                            prefix=progress_prefix)

            step += 1
            batches.advance(1)

    finally:
        print("Done. Total time %s. More seqs which we did not dumped: %s" %
              (hms(time.time() - start_time), batches.has_more()),
              file=log.v2)
        print("Dataset epoch %i, order %r." %
              (dataset.epoch, dataset.seq_ordering))
        print("Num batches (steps): %i" % step, file=log.v1)
        print("Num seqs: %i" % total_num_seqs, file=log.v1)
        num_seqs_stats.dump(stream=log.v1, stream_prefix="Batch num seqs ")
        for key in used_data_keys:
            print("Data key %r:" % key, file=log.v1)
            print("  Num frames: %s" % total_num_frames[key], file=log.v1)
            print("  Num used frames: %s" % total_num_used_frames[key],
                  file=log.v1)
            print("  Fraction used frames: %s" %
                  (total_num_used_frames / total_num_frames)[key],
                  file=log.v1)
        dataset.finish_epoch()