def main(): with socket(AF_INET, SOCK_STREAM) as s: s.bind((HOST, PORT)) s.listen(0) conn, addr = s.accept() print('connected by', addr) RFB(conn)
#-------------------------------------# # 调用摄像头检测 #-------------------------------------# from rfb import RFB from PIL import Image import numpy as np import cv2 import time rfb = RFB() # 调用摄像头 capture = cv2.VideoCapture(0) # capture=cv2.VideoCapture("1.mp4") fps = 0.0 while (True): t1 = time.time() # 读取某一帧 ref, frame = capture.read() # 格式转变,BGRtoRGB frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # 转变成Image frame = Image.fromarray(np.uint8(frame)) # 进行检测 frame = np.array(rfb.detect_image(frame)) # RGBtoBGR满足opencv显示格式 frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) fps = (fps + (1. / (time.time() - t1))) / 2 print("fps= %.2f" % (fps)) frame = cv2.putText(frame, "fps= %.2f" % (fps), (0, 40), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
#-----------------------------------------------------------------------# # predict.py将单张图片预测、摄像头检测、FPS测试和目录遍历检测等功能 # 整合到了一个py文件中,通过指定mode进行模式的修改。 #-----------------------------------------------------------------------# import time import cv2 import numpy as np from PIL import Image from rfb import RFB if __name__ == "__main__": rfb = RFB() #----------------------------------------------------------------------------------------------------------# # mode用于指定测试的模式: # 'predict' 表示单张图片预测,如果想对预测过程进行修改,如保存图片,截取对象等,可以先看下方详细的注释 # 'video' 表示视频检测,可调用摄像头或者视频进行检测,详情查看下方注释。 # 'fps' 表示测试fps,使用的图片是img里面的street.jpg,详情查看下方注释。 # 'dir_predict' 表示遍历文件夹进行检测并保存。默认遍历img文件夹,保存img_out文件夹,详情查看下方注释。 #----------------------------------------------------------------------------------------------------------# mode = "predict" #-------------------------------------------------------------------------# # crop 指定了是否在单张图片预测后对目标进行截取 # count 指定了是否进行目标的计数 # crop、count仅在mode='predict'时有效 #-------------------------------------------------------------------------# crop = False count = False #----------------------------------------------------------------------------------------------------------# # video_path 用于指定视频的路径,当video_path=0时表示检测摄像头
"VOC2007/ImageSets/Main/test.txt")).read().strip().split() if not os.path.exists(map_out_path): os.makedirs(map_out_path) if not os.path.exists(os.path.join(map_out_path, 'ground-truth')): os.makedirs(os.path.join(map_out_path, 'ground-truth')) if not os.path.exists(os.path.join(map_out_path, 'detection-results')): os.makedirs(os.path.join(map_out_path, 'detection-results')) if not os.path.exists(os.path.join(map_out_path, 'images-optional')): os.makedirs(os.path.join(map_out_path, 'images-optional')) class_names, _ = get_classes(classes_path) if map_mode == 0 or map_mode == 1: print("Load model.") rfb = RFB(confidence=confidence, nms_iou=nms_iou) print("Load model done.") print("Get predict result.") for image_id in tqdm(image_ids): image_path = os.path.join( VOCdevkit_path, "VOC2007/JPEGImages/" + image_id + ".jpg") image = Image.open(image_path) if map_vis: image.save( os.path.join(map_out_path, "images-optional/" + image_id + ".jpg")) rfb.get_map_txt(image_id, image, class_names, map_out_path) print("Get predict result done.") if map_mode == 0 or map_mode == 2:
''' predict.py有几个注意点 1、无法进行批量预测,如果想要批量预测,可以利用os.listdir()遍历文件夹,利用Image.open打开图片文件进行预测。 2、如果想要保存,利用r_image.save("img.jpg")即可保存。 3、如果想要获得框的坐标,可以进入detect_image函数,读取top,left,bottom,right这四个值。 4、如果想要截取下目标,可以利用获取到的top,left,bottom,right这四个值在原图上利用矩阵的方式进行截取。 ''' from keras.layers import Input from PIL import Image from rfb import RFB rfb = RFB() while True: img = input('Input image filename:') try: image = Image.open(img) except: print('Open Error! Try again!') continue else: r_image = rfb.detect_image(image) r_image.show() rfb.close_session()