def randomPairing(n, w=None, seed=None):
    '''generates a (uniformly) random non-crossing pairing of length 2n
    If w != None, then generates a pairing from a Galton-Watson tree
    with weight sequence w'''
    if w == None:
        path = dp.randomDyckPath(n, seed=seed)
    else:
        tree = ut.randomTree(n + 1, w, seed=seed)
        path = ut.treeToDyckPath(tree)
    prng = Pairing(path)
    return prng
def main():
    print('OrderedTree methods are used')
    w = np.array([1] * 3)
    #rw = tu.rescale(w) #This rescaling is done in function that generates Lukasiewicz path
    #print(rw)

    n = 10
    seed = 12345
    #seed = 0 #(random - changing from one execution to another)

    tr = randomTree(n, w, SEED=seed)
    #tr = randomBTree(n, SEED = seed)
    print(tr)
    tr.draw(drawLabels=True)

    heights, sizes = tr.calcHeightsSizes(0)
    print("heights = " + str(heights))
    print("sizes = " + str(sizes))
    '''
    These are some drawings and calculations associated with Slim Trees
    '''

    n = 400
    #n = 20
    seed = 12345
    seed = 0
    k = 10
    tr = randomSlimTree(k, n, SEED=seed)
    #print(tr)
    #fig, ax = tr.draw(drawLabels = True, block = False)
    #fig, ax = tr.draw(drawLabels = False, block = False)
    #fig1, (ax1, ax2) = plt.subplots(nrows=1, ncols=2)
    _, ax = tr.draw(drawLabels=False, block=False)
    H, v = tr.height()
    dist = tr.heightVertex(v)
    print("Height of vertex " + str(v) + " is " + str(dist))
    tr.drawPathToVertex(ax, v)
    print("Height of the tree is " + str(H))
    v = 1
    S = tr.sizeVertex(v)
    print("size of vertex " + str(v) + " is " + str(S))

    n = 5
    seed = 3
    path = dp.randomDyckPath(n, seed=seed)
    print("path = ", path)
    tr = fromDyck(path)

    _, ax = tr.draw(drawLabels=True, block=False)

    plt.show()
Exemple #3
0
def main():
    '''
    #Generate and prints a random tree (weighted)
    n = 100
    w = [1, 1, 1]
    tree = randomTree(n, w)
    print(tree)
    tree.draw(drawLabels = True)
    
    
    #Creates a random Dyck path and plot it 
    #path = randomDyckPath(n)
    path = treeToDyckPath(tree)
    #print(path)
    S = np.cumsum([0] + path)
    fig1, ax1 = plt.subplots(nrows=1, ncols=1)
    ax1.plot(S)
    ax1.grid(True)
    ax1.xaxis.set_ticks(np.arange(0,S.shape[0]))
    ax1.yaxis.set_ticks(np.arange(0, np.max(S) + 1))
    
    
    #Generates a random meander, finds a random cluster cycle (all 
    #point in the cycle are near each other and prints them. 
    n = 100    
    mndr = mr.randomMeander(n)  
    fig, ax = mndr.draw()
    clusters = findQuasiClusters(mndr)  
    print("clusters = \n", clusters)
    
    #here it looks for the largest quasi cluster cycle -- some gaps are allowed. 
    mgs = 9
    cycle = largestCluster(mndr, max_gap_size = mgs)
    print("Largest quasi cluster cycle is ", cycle)
    print("Its length is ", largestClusterLength(mndr, max_gap_size= mgs))
    
    mndr.drawCycle(cycle, ax = ax)
    '''

    #let us generate all non-crossing pairings of length n
    n = 6
    A = allPairings(n)
    print(len(A))
    '''
    p = [3, 2, 1, 0, 5, 4]
    q = [1, 0, 3, 2, 5, 4]
    mndr = Meander(p, q)
    mndr.draw()
    x = dot(p, q)
    print(x)
    '''

    M = dotMatrix(n)
    print(type(M))
    print(M)
    path = "/Users/vladislavkargin/Dropbox/Programs/forPapers/Meanders/"
    print(os.path.isdir(path))
    np.savetxt(path + "Matrix" + str(n) + ".csv", M.astype(int), delimiter=',')
    w = la.eigvalsh(M)
    print(w)

    q = 0.5
    #q = 7/8
    Mq = q**(n - M)
    print(Mq)
    w = la.eigvalsh(Mq)
    print("Eigenvalues: ", w)
    print("Maximum eigenvalue: ", max(w))
    print("Minimal Eigenvalue: ", min(w))
    print("Minimal Eigenvalue * C_n^2: ", min(w) * (Mq.shape[0]**2))
    print("Number of Negative Eigenvalues: ", (w[w < 0]).shape[0])
    print("Index: ", (w[w > 0]).shape[0] - (w[w < 0]).shape[0])
    plt.plot(w)
    plt.grid()
    ''' I used this for an example in my Math 447 class.
    plotRandomProperMeander(5)
    plt.grid(True)        
    '''
    '''This is for paper. It is now available as a notebook in Colab'''
    '''
    seed = 3
    n = 5
    path1 = randomDyckPath(n, seed = seed)
    plotDyckPath(path1)
    prng1 = pg.Pairing(path = path1)
    prng1.draw()
    
    area = areaDyckPath(path1)
    print("Area of path1 is ", area)   
     
    path2 = randomDyckPath(n, seed = seed + 2)
    #plotDyckPath(path2, method = "lowerLatticePath")
    area = areaDyckPath(path2)
    print("Area of path2 is ", area)  
    
    prng2 = pg.Pairing(path = path2)
    mndr = Meander(prng1, prng2)
    mndr.draw(drawCycles=True)
    mr.drawAsPolygon(mndr)
   '''
    seed = 3
    n = 10
    path1 = dp.randomDyckPath(n, seed=seed)
    dp.plotDyckPath(path1)
    area = dp.areaDyckPath(path1)
    print("Area of path1 is ", area)
    nvalleys = len(dp.valleys(path1))
    print("Number of valleys is ", nvalleys)

    n = 4
    np.random.seed()
    perm = np.random.permutation(n)
    print(perm)
    cycles = cmb.cyclesOfPerm(perm)
    print(cycles)

    plt.show()
Exemple #4
0
def random231perm(n):
    ''' generates a random 231 permutation of n objects, like 3 0 2 1 for n = 4'''
    path = dp.randomDyckPath(n)
    p = dp.pathTo231perm(path)
    return p