def create_mch(self):
        bpy.ops.object.mode_set(mode='EDIT')
        edit_bones = self.obj.data.edit_bones

        main_bone_name = strip_org(self.bones['org'][0])
        mouth_lock_name = make_mechanism_name(main_bone_name + "_lock")
        mouth_lock = copy_bone(self.obj, self.main_mch, mouth_lock_name)

        self.bones['jaw_mch'] = dict()
        self.bones['jaw_mch']['mouth_lock'] = mouth_lock
        self.bones['jaw_mch']['jaw_masters'] = []

        jaw_masters_number = self.lip_len + 3

        for i in range(0, jaw_masters_number):
            jaw_m_name = make_mechanism_name("jaw_master")
            jaw_m = copy_bone(self.obj, self.main_mch, jaw_m_name)
            div_len = (edit_bones[mouth_lock].length /
                       (jaw_masters_number + 1))
            edit_bones[jaw_m].length = (jaw_masters_number - i) * div_len
            edit_bones[jaw_m].use_connect = False

            self.bones['jaw_mch']['jaw_masters'].append(jaw_m)

        # create remaining subchain mch-s
        super().create_mch()
    def create_mch(self):

        bpy.ops.object.mode_set(mode='EDIT')
        edit_bones = self.obj.data.edit_bones

        self.bones['eye_mch'] = dict()
        self.bones['eye_mch']['eyelid_top'] = []
        self.bones['eye_mch']['eyelid_bottom'] = []
        self.bones['eye_mch']['eye_master'] = ''
        self.bones['eye_mch']['eye_master_tip'] = ''

        main_bone_name = strip_org(self.bones['org'][0])
        eye_mch_name = make_mechanism_name(main_bone_name)
        eye_mch_name = copy_bone(self.obj, self.bones['org'][0], eye_mch_name)
        self.bones['eye_mch']['eye_master'] = eye_mch_name

        eye_tip_mch_name = copy_bone(self.obj, self.orientation_bone,
                                     eye_mch_name)
        self.bones['eye_mch']['eye_master_tip'] = eye_tip_mch_name
        put_bone(self.obj, eye_tip_mch_name, edit_bones[eye_mch_name].tail)
        if self.orientation_bone == self.base_bone:
            align_bone_y_axis(self.obj, eye_tip_mch_name, Vector((0, 0, 1)))
        edit_bones[
            eye_tip_mch_name].length = 0.25 * edit_bones[eye_mch_name].length

        # top lid
        top_lid_chain = self.get_chain_bones(self.lid_bones['top'][0])
        for l_b in top_lid_chain:
            lid_m_name = copy_bone(self.obj, self.bones['org'][0],
                                   eye_mch_name)
            edit_bones[lid_m_name].tail = edit_bones[l_b].tail
            self.bones['eye_mch']['eyelid_top'].append(lid_m_name)

        # bottom lid
        bottom_lid_chain = self.get_chain_bones(self.lid_bones['bottom'][0])
        for l_b in bottom_lid_chain:
            lid_m_name = copy_bone(self.obj, self.bones['org'][0],
                                   eye_mch_name)
            edit_bones[lid_m_name].tail = edit_bones[l_b].tail
            self.bones['eye_mch']['eyelid_bottom'].append(lid_m_name)

        # create mch for eye_follow driver
        if self.needs_driver:
            if self.paired_eye or self.is_clustered():
                eye_follow_mch = self.get_common_name()
            else:
                eye_follow_mch = strip_org(self.base_bone)
            eye_follow_mch = make_mechanism_name(eye_follow_mch)
            eye_follow_mch += "_parent"

            if eye_follow_mch not in edit_bones:
                parent = edit_bones[self.base_bone].parent.name
                eye_follow_mch = copy_bone(self.obj, parent, eye_follow_mch)
                edit_bones[
                    eye_follow_mch].length = 0.25 * edit_bones[parent].length
            self.bones['eye_mch']['eyefollow'] = eye_follow_mch

        super().create_mch()
Exemple #3
0
    def create_mch(self):
        bpy.ops.object.mode_set(mode='EDIT')
        edit_bones = self.obj.data.edit_bones

        main_bone_name = strip_org(self.bones['org'][0])
        mouth_lock_name = make_mechanism_name(main_bone_name + "_lock")
        mouth_lock = copy_bone(self.obj, self.main_mch, mouth_lock_name)

        self.bones['jaw_mch'] = dict()
        self.bones['jaw_mch']['mouth_lock'] = mouth_lock
        self.bones['jaw_mch']['jaw_masters'] = []

        jaw_masters_number = 3

        for i in range(0, jaw_masters_number):
            jaw_m_name = make_mechanism_name("jaw_master")
            jaw_m = copy_bone(self.obj, self.main_mch, jaw_m_name)
            div_len = (edit_bones[mouth_lock].length/(jaw_masters_number + 1))
            edit_bones[jaw_m].length = (jaw_masters_number - i) * div_len
            edit_bones[jaw_m].use_connect = False

            self.bones['jaw_mch']['jaw_masters'].append(jaw_m)

        self.bones['mouth_mch'] = dict()

        org_top = self.mouth_bones['top'][0]
        top_mch_name = make_mechanism_name(strip_org(org_top))
        top_mch = copy_bone(self.obj, org_top, top_mch_name)
        self.bones['mouth_mch']['top'] = [top_mch]
        edit_bones[top_mch].use_connect = False

        self.bones['mouth_mch']['corners'] = []
        for org_name in self.mouth_bones['corners']:
            mch_name = make_mechanism_name(strip_org(org_name))
            mch = copy_bone(self.obj, org_name, mch_name)
            self.bones['mouth_mch']['corners'].append(mch)
            edit_bones[mch].use_connect = False

        org_bottom = self.mouth_bones['bottom'][0]
        bottom_mch_name = make_mechanism_name(strip_org(org_bottom))
        bottom_mch = copy_bone(self.obj, org_bottom, bottom_mch_name)
        self.bones['mouth_mch']['bottom'] = [bottom_mch]
        edit_bones[bottom_mch].use_connect = False

        mbs = self.flatten(self.bones['mouth_mch'])
        mouth_center = edit_bones[mbs[0]].head
        for b in mbs[1:]:
            mouth_center = mouth_center + edit_bones[b].head
        mouth_center = mouth_center / len(mbs)

        for b in self.flatten(self.bones['mouth_mch']):
            put_bone(self.obj, b, mouth_center)

        # create remaining subchain mch-s
        super().create_mch()
Exemple #4
0
    def make_mch_chain(self):
        """
        Create all MCHs needed on a single chain
        :return:
        :rtype: list
        """

        if not self.active:
            return []

        bpy.ops.object.mode_set(mode='EDIT')
        edit_bones = self.obj.data.edit_bones

        chain = self._bones['org']

        self._bones['mch'] = []

        if self.chain_type == ChainType.TYPE_MCH_BASED:
            for chain_bone in chain:
                mch = make_mechanism_name(strip_org(chain_bone))
                mch = copy_bone(self.obj, chain_bone, assign_name=mch)
                edit_bones[mch].parent = None
                edit_bones[mch].use_connect = False
                edit_bones[mch].length *= self.MCH_SCALE
                self._bones['mch'].append(mch)

        return self._bones['mch']
    def create_mch(self):

        bpy.ops.object.mode_set(mode='EDIT')
        edit_bones = self.obj.data.edit_bones

        super().create_mch()

        self.bones['tail_mch'] = {}

        org_chain = self.get_chain_bones(self.base_bone)

        if edit_bones[org_chain[0]].parent:
            bone_to_copy = edit_bones[org_chain[0]].parent.name
        else:
            bone_to_copy = self.orientation_bone

        mch_rot_tail = make_mechanism_name('ROT-' + strip_org(self.base_bone))
        mch_rot_tail = copy_bone(self.obj,
                                 bone_to_copy,
                                 assign_name=mch_rot_tail)
        self.bones['tail_mch']['rot_tail_mch'] = mch_rot_tail
        main_chain = self.get_chain_bones(self.base_bone)
        flip_bone(self.obj, mch_rot_tail)
        edit_bones[mch_rot_tail].parent = None
        put_bone(self.obj, mch_rot_tail, edit_bones[main_chain[0]].head)
Exemple #6
0
    def generate(self):
        """ Generate the rig.
            Do NOT modify any of the original bones, except for adding constraints.
            The main armature should be selected and active before this is called.

        """
        bpy.ops.object.mode_set(mode='EDIT')
        eb = self.obj.data.edit_bones

        org_delta = self.org_bones["delta"]
        org_delta_e = eb[self.org_bones["delta"]]
        # org_child = self.org_bones["child"]  # UNUSED
        org_child_e = eb[self.org_bones["child"]]

        # Calculate the matrix for achieving the delta
        child_mat = org_delta_e.matrix.invert() * org_child_e.matrix
        mat = org_delta_e.matrix * child_mat.invert()

        # Create the delta bones.
        delta_e = eb[copy_bone(self.obj, self.org_bones["delta"])]
        delta_e.name = make_mechanism_name(self.org_names[0])
        delta = delta_e.name

        # Set the delta to the matrix's transforms
        set_mat(self.obj, delta, mat)

        bpy.ops.object.mode_set(mode='OBJECT')

        # Constrain org_delta to delta
        con = self.obj.pose.bones[org_delta].constraints.new('COPY_TRANSFORMS')
        con.name = "delta"
        con.target = self.obj
        con.subtarget = delta
    def generate(self):
        """ Generate the rig.
            Do NOT modify any of the original bones, except for adding constraints.
            The main armature should be selected and active before this is called.

        """
        bpy.ops.object.mode_set(mode='EDIT')
        eb = self.obj.data.edit_bones

        org_delta = self.org_bones["delta"]
        org_delta_e = eb[self.org_bones["delta"]]
        org_child = self.org_bones["child"]
        org_child_e = eb[self.org_bones["child"]]

        # Calculate the matrix for achieving the delta
        child_mat = org_delta_e.matrix.invert() * org_child_e.matrix
        mat = org_delta_e.matrix * child_mat.invert()

        # Create the delta bones.
        delta_e = eb[copy_bone(self.obj, self.org_bones["delta"])]
        delta_e.name = make_mechanism_name(self.org_names[0])
        delta = delta_e.name

        # Set the delta to the matrix's transforms
        set_mat(self.obj, delta, mat)

        bpy.ops.object.mode_set(mode='OBJECT')

        # Constrain org_delta to delta
        con = self.obj.pose.bones[org_delta].constraints.new('COPY_TRANSFORMS')
        con.name = "delta"
        con.target = self.obj
        con.subtarget = delta
    def create_mch(self):
        bpy.ops.object.mode_set(mode='EDIT')
        edit_bones = self.obj.data.edit_bones

        mch_bone = make_mechanism_name(strip_org(self.base_bone))
        mch_bone = copy_bone(self.obj, self.base_bone, mch_bone)
        self.bones['glue_mch'] = mch_bone

        MCH_LAYER = [n == 30 for n in range(0, 32)]
        edit_bones[mch_bone].layers = MCH_LAYER

        if self.glue_mode == 'bridge':
            self.bones['glue_mch'] = [mch_bone]
            b = self.base_bone
            put_bone(
                self.obj, mch_bone, edit_bones[b].head -
                (edit_bones[mch_bone].tail - edit_bones[mch_bone].head))

            mch_bone = make_mechanism_name(strip_org(self.base_bone))
            mch_bone = copy_bone(self.obj, self.base_bone, mch_bone)
            self.bones['glue_mch'].append(mch_bone)
            put_bone(self.obj, mch_bone, edit_bones[b].tail)
            edit_bones[mch_bone].layers = MCH_LAYER
Exemple #9
0
    def generate(self):
        """ Generate the rig.
            Do NOT modify any of the original bones, except for adding constraints.
            The main armature should be selected and active before this is called.
        """
        # Generate base IK limb
        bone_list = self.ik_limb.generate()
        thigh = bone_list[0]
        shin = bone_list[1]
        foot = bone_list[2]
        foot_mch = bone_list[3]
        pole = bone_list[4]
        # vispole = bone_list[5]
        # visfoot = bone_list[6]

        # Build IK foot rig
        bpy.ops.object.mode_set(mode='EDIT')
        make_rocker = False
        if self.org_bones[5] is not None:
            make_rocker = True

        # Create the bones
        toe = copy_bone(self.obj, self.org_bones[3],
                        strip_org(self.org_bones[3]))
        toe_parent = copy_bone(
            self.obj, self.org_bones[2],
            make_mechanism_name(strip_org(self.org_bones[3] + ".parent")))
        toe_parent_socket1 = copy_bone(
            self.obj, self.org_bones[2],
            make_mechanism_name(strip_org(self.org_bones[3] + ".socket1")))
        toe_parent_socket2 = copy_bone(
            self.obj, self.org_bones[2],
            make_mechanism_name(strip_org(self.org_bones[3] + ".socket2")))

        foot_roll = copy_bone(
            self.obj, self.org_bones[4],
            strip_org(insert_before_lr(self.org_bones[2], "_roll.ik")))
        roll1 = copy_bone(
            self.obj, self.org_bones[4],
            make_mechanism_name(strip_org(self.org_bones[2] + ".roll.01")))
        roll2 = copy_bone(
            self.obj, self.org_bones[4],
            make_mechanism_name(strip_org(self.org_bones[2] + ".roll.02")))

        if make_rocker:
            rocker1 = copy_bone(
                self.obj, self.org_bones[5],
                make_mechanism_name(strip_org(self.org_bones[2] +
                                              ".rocker.01")))
            rocker2 = copy_bone(
                self.obj, self.org_bones[5],
                make_mechanism_name(strip_org(self.org_bones[2] +
                                              ".rocker.02")))

        # Get edit bones
        eb = self.obj.data.edit_bones

        org_foot_e = eb[self.org_bones[2]]
        foot_e = eb[foot]
        foot_ik_target_e = eb[foot_mch]
        toe_e = eb[toe]
        toe_parent_e = eb[toe_parent]
        toe_parent_socket1_e = eb[toe_parent_socket1]
        toe_parent_socket2_e = eb[toe_parent_socket2]
        foot_roll_e = eb[foot_roll]
        roll1_e = eb[roll1]
        roll2_e = eb[roll2]
        if make_rocker:
            rocker1_e = eb[rocker1]
            rocker2_e = eb[rocker2]

        # Parenting
        foot_ik_target_e.use_connect = False
        foot_ik_target_e.parent = roll2_e

        toe_e.parent = toe_parent_e
        toe_parent_e.use_connect = False
        toe_parent_e.parent = toe_parent_socket1_e
        toe_parent_socket1_e.use_connect = False
        toe_parent_socket1_e.parent = roll1_e
        toe_parent_socket2_e.use_connect = False
        toe_parent_socket2_e.parent = eb[self.org_bones[2]]

        foot_roll_e.use_connect = False
        foot_roll_e.parent = foot_e

        roll1_e.use_connect = False
        roll1_e.parent = foot_e

        roll2_e.use_connect = False
        roll2_e.parent = roll1_e

        if make_rocker:
            rocker1_e.use_connect = False
            rocker2_e.use_connect = False

            roll1_e.parent = rocker2_e
            rocker2_e.parent = rocker1_e
            rocker1_e.parent = foot_e

        # Positioning
        vec = Vector(toe_e.vector)
        vec.normalize()
        foot_e.tail = foot_e.head + (vec * foot_e.length)
        foot_e.roll = toe_e.roll

        flip_bone(self.obj, toe_parent_socket1)
        flip_bone(self.obj, toe_parent_socket2)
        toe_parent_socket1_e.head = Vector(org_foot_e.tail)
        toe_parent_socket2_e.head = Vector(org_foot_e.tail)
        toe_parent_socket1_e.tail = Vector(org_foot_e.tail) + (Vector(
            (0, 0, 1)) * foot_e.length / 2)
        toe_parent_socket2_e.tail = Vector(org_foot_e.tail) + (Vector(
            (0, 0, 1)) * foot_e.length / 3)
        toe_parent_socket2_e.roll = toe_parent_socket1_e.roll

        tail = Vector(roll1_e.tail)
        roll1_e.tail = Vector(org_foot_e.tail)
        roll1_e.tail = Vector(org_foot_e.tail)
        roll1_e.head = tail
        roll2_e.head = Vector(org_foot_e.tail)
        foot_roll_e.head = Vector(org_foot_e.tail)
        put_bone(self.obj, foot_roll, roll1_e.head)
        foot_roll_e.length /= 2

        roll_axis = roll1_e.vector.cross(org_foot_e.vector)
        align_bone_x_axis(self.obj, roll1, roll_axis)
        align_bone_x_axis(self.obj, roll2, roll_axis)
        foot_roll_e.roll = roll2_e.roll

        if make_rocker:
            d = toe_e.y_axis.dot(rocker1_e.x_axis)
            if d >= 0.0:
                flip_bone(self.obj, rocker2)
            else:
                flip_bone(self.obj, rocker1)

        # Object mode, get pose bones
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        foot_p = pb[foot]
        foot_roll_p = pb[foot_roll]
        roll1_p = pb[roll1]
        roll2_p = pb[roll2]
        if make_rocker:
            rocker1_p = pb[rocker1]
            rocker2_p = pb[rocker2]
        toe_p = pb[toe]
        # toe_parent_p = pb[toe_parent]
        toe_parent_socket1_p = pb[toe_parent_socket1]

        # Foot roll control only rotates on x-axis, or x and y if rocker.
        foot_roll_p.rotation_mode = 'XYZ'
        if make_rocker:
            foot_roll_p.lock_rotation = False, False, True
        else:
            foot_roll_p.lock_rotation = False, True, True
        foot_roll_p.lock_location = True, True, True
        foot_roll_p.lock_scale = True, True, True

        # roll and rocker bones set to euler rotation
        roll1_p.rotation_mode = 'XYZ'
        roll2_p.rotation_mode = 'XYZ'
        if make_rocker:
            rocker1_p.rotation_mode = 'XYZ'
            rocker2_p.rotation_mode = 'XYZ'

        # toe_parent constraint
        con = toe_parent_socket1_p.constraints.new('COPY_LOCATION')
        con.name = "copy_location"
        con.target = self.obj
        con.subtarget = toe_parent_socket2

        con = toe_parent_socket1_p.constraints.new('COPY_SCALE')
        con.name = "copy_scale"
        con.target = self.obj
        con.subtarget = toe_parent_socket2

        con = toe_parent_socket1_p.constraints.new(
            'COPY_TRANSFORMS')  # drive with IK switch
        con.name = "fk"
        con.target = self.obj
        con.subtarget = toe_parent_socket2

        fcurve = con.driver_add("influence")
        driver = fcurve.driver
        var = driver.variables.new()
        driver.type = 'AVERAGE'
        var.name = "var"
        var.targets[0].id_type = 'OBJECT'
        var.targets[0].id = self.obj
        var.targets[0].data_path = foot_p.path_from_id() + '["ikfk_switch"]'
        mod = fcurve.modifiers[0]
        mod.poly_order = 1
        mod.coefficients[0] = 1.0
        mod.coefficients[1] = -1.0

        # Foot roll drivers
        fcurve = roll1_p.driver_add("rotation_euler", 0)
        driver = fcurve.driver
        var = driver.variables.new()
        driver.type = 'SCRIPTED'
        driver.expression = "min(0,var)"
        var.name = "var"
        var.targets[0].id_type = 'OBJECT'
        var.targets[0].id = self.obj
        var.targets[0].data_path = foot_roll_p.path_from_id(
        ) + '.rotation_euler[0]'

        fcurve = roll2_p.driver_add("rotation_euler", 0)
        driver = fcurve.driver
        var = driver.variables.new()
        driver.type = 'SCRIPTED'
        driver.expression = "max(0,var)"
        var.name = "var"
        var.targets[0].id_type = 'OBJECT'
        var.targets[0].id = self.obj
        var.targets[0].data_path = foot_roll_p.path_from_id(
        ) + '.rotation_euler[0]'

        if make_rocker:
            fcurve = rocker1_p.driver_add("rotation_euler", 0)
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'SCRIPTED'
            driver.expression = "max(0,-var)"
            var.name = "var"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = foot_roll_p.path_from_id(
            ) + '.rotation_euler[1]'

            fcurve = rocker2_p.driver_add("rotation_euler", 0)
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'SCRIPTED'
            driver.expression = "max(0,var)"
            var.name = "var"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = foot_roll_p.path_from_id(
            ) + '.rotation_euler[1]'

        # Constrain toe bone to toe control
        con = pb[self.org_bones[3]].constraints.new('COPY_TRANSFORMS')
        con.name = "copy_transforms"
        con.target = self.obj
        con.subtarget = toe

        # Set layers if specified
        if self.layers:
            foot_roll_p.bone.layers = self.layers
            toe_p.bone.layers = [
                (i[0] or i[1]) for i in zip(toe_p.bone.layers, self.layers)
            ]  # Both FK and IK layers

        # Create widgets
        create_circle_widget(self.obj, toe, radius=0.7, head_tail=0.5)

        ob = create_widget(self.obj, foot_roll)
        if ob is not None:
            verts = [
                (0.3999999761581421, 0.766044557094574, 0.6427875757217407),
                (0.17668449878692627, 3.823702598992895e-08,
                 3.2084670920085046e-08),
                (-0.17668461799621582, 9.874240447516058e-08,
                 8.285470443070153e-08),
                (-0.39999961853027344, 0.7660449147224426, 0.6427879333496094),
                (0.3562471270561218, 0.6159579753875732, 0.5168500542640686),
                (-0.35624682903289795, 0.6159582138061523, 0.5168502926826477),
                (0.20492683351039886, 0.09688037633895874, 0.0812922865152359),
                (-0.20492687821388245, 0.0968804731965065, 0.08129236847162247)
            ]
            edges = [(1, 2), (0, 3), (0, 4), (3, 5), (1, 6), (4, 6), (2, 7),
                     (5, 7)]
            mesh = ob.data
            mesh.from_pydata(verts, edges, [])
            mesh.update()

            mod = ob.modifiers.new("subsurf", 'SUBSURF')
            mod.levels = 2

        ob = create_widget(self.obj, foot)
        if ob is not None:
            verts = [(0.7, 1.5, 0.0), (0.7, -0.25, 0.0), (-0.7, -0.25, 0.0),
                     (-0.7, 1.5, 0.0), (0.7, 0.723, 0.0), (-0.7, 0.723, 0.0),
                     (0.7, 0.0, 0.0), (-0.7, 0.0, 0.0)]
            edges = [(1, 2), (0, 3), (0, 4), (3, 5), (4, 6), (1, 6), (5, 7),
                     (2, 7)]
            mesh = ob.data
            mesh.from_pydata(verts, edges, [])
            mesh.update()

            mod = ob.modifiers.new("subsurf", 'SUBSURF')
            mod.levels = 2

        return [thigh, shin, foot, pole, foot_roll, foot_mch]
Exemple #10
0
    def generate(self):
        """ Generate the rig.
            Do NOT modify any of the original bones, except for adding constraints.
            The main armature should be selected and active before this is called.

        """
        bpy.ops.object.mode_set(mode='EDIT')

        # Create the control bones
        uarm = copy_bone(self.obj, self.org_bones[0],
                         strip_org(self.org_bones[0]))
        farm = copy_bone(self.obj, self.org_bones[1],
                         strip_org(self.org_bones[1]))
        hand = copy_bone(self.obj, self.org_bones[2],
                         strip_org(self.org_bones[2]))

        # Create the hinge bones
        if self.org_parent != None:
            hinge = copy_bone(self.obj, self.org_parent,
                              make_mechanism_name(uarm + ".hinge"))
            socket1 = copy_bone(self.obj, uarm,
                                make_mechanism_name(uarm + ".socket1"))
            socket2 = copy_bone(self.obj, uarm,
                                make_mechanism_name(uarm + ".socket2"))

        # Get edit bones
        eb = self.obj.data.edit_bones

        uarm_e = eb[uarm]
        farm_e = eb[farm]
        hand_e = eb[hand]

        if self.org_parent != None:
            hinge_e = eb[hinge]
            socket1_e = eb[socket1]
            socket2_e = eb[socket2]

        # Parenting
        farm_e.parent = uarm_e
        hand_e.parent = farm_e

        if self.org_parent != None:
            hinge_e.use_connect = False
            socket1_e.use_connect = False
            socket2_e.use_connect = False

            uarm_e.parent = hinge_e
            hinge_e.parent = socket2_e
            socket2_e.parent = None

        # Positioning
        if self.org_parent != None:
            center = (hinge_e.head + hinge_e.tail) / 2
            hinge_e.head = center
            socket1_e.length /= 4
            socket2_e.length /= 3

        # Object mode, get pose bones
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        uarm_p = pb[uarm]
        farm_p = pb[farm]
        hand_p = pb[hand]
        if self.org_parent != None:
            hinge_p = pb[hinge]

        if self.org_parent != None:
            # socket1_p = pb[socket1]  # UNUSED
            socket2_p = pb[socket2]

        # Set the elbow to only bend on the x-axis.
        farm_p.rotation_mode = 'XYZ'
        if 'X' in self.primary_rotation_axis:
            farm_p.lock_rotation = (False, True, True)
        elif 'Y' in self.primary_rotation_axis:
            farm_p.lock_rotation = (True, False, True)
        else:
            farm_p.lock_rotation = (True, True, False)

        # Hinge transforms are locked, for auto-ik
        if self.org_parent != None:
            hinge_p.lock_location = True, True, True
            hinge_p.lock_rotation = True, True, True
            hinge_p.lock_rotation_w = True
            hinge_p.lock_scale = True, True, True

        # Set up custom properties
        if self.org_parent != None:
            prop = rna_idprop_ui_prop_get(uarm_p, "isolate", create=True)
            uarm_p["isolate"] = 0.0
            prop["soft_min"] = prop["min"] = 0.0
            prop["soft_max"] = prop["max"] = 1.0

        # Hinge constraints / drivers
        if self.org_parent != None:
            con = socket2_p.constraints.new('COPY_LOCATION')
            con.name = "copy_location"
            con.target = self.obj
            con.subtarget = socket1

            con = socket2_p.constraints.new('COPY_TRANSFORMS')
            con.name = "isolate_off"
            con.target = self.obj
            con.subtarget = socket1

            # Driver
            fcurve = con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'AVERAGE'
            var.name = "var"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = uarm_p.path_from_id() + '["isolate"]'
            mod = fcurve.modifiers[0]
            mod.poly_order = 1
            mod.coefficients[0] = 1.0
            mod.coefficients[1] = -1.0

        # Constrain org bones to controls
        con = pb[self.org_bones[0]].constraints.new('COPY_TRANSFORMS')
        con.name = "fk"
        con.target = self.obj
        con.subtarget = uarm

        con = pb[self.org_bones[1]].constraints.new('COPY_TRANSFORMS')
        con.name = "fk"
        con.target = self.obj
        con.subtarget = farm

        con = pb[self.org_bones[2]].constraints.new('COPY_TRANSFORMS')
        con.name = "fk"
        con.target = self.obj
        con.subtarget = hand

        # Set layers if specified
        if self.layers:
            uarm_p.bone.layers = self.layers
            farm_p.bone.layers = self.layers
            hand_p.bone.layers = self.layers

        # Create control widgets
        create_limb_widget(self.obj, uarm)
        create_limb_widget(self.obj, farm)

        ob = create_widget(self.obj, hand)
        if ob != None:
            verts = [(0.7, 1.5, 0.0), (0.7, -0.25, 0.0), (-0.7, -0.25, 0.0),
                     (-0.7, 1.5, 0.0), (0.7, 0.723, 0.0), (-0.7, 0.723, 0.0),
                     (0.7, 0.0, 0.0), (-0.7, 0.0, 0.0)]
            edges = [(1, 2), (0, 3), (0, 4), (3, 5), (4, 6), (1, 6), (5, 7),
                     (2, 7)]
            mesh = ob.data
            mesh.from_pydata(verts, edges, [])
            mesh.update()

            mod = ob.modifiers.new("subsurf", 'SUBSURF')
            mod.levels = 2

        return [uarm, farm, hand]
    def generate(self):
        bpy.ops.object.mode_set(mode='EDIT')

        eb = self.obj.data.edit_bones

        # Create the control bones
        ulimb_ik = copy_bone(
            self.obj, self.org_bones[0],
            pantin_utils.strip_LR_numbers(strip_org(self.org_bones[0])) +
            '.IK' + self.side_suffix)
        flimb_ik = copy_bone(
            self.obj, self.org_bones[1],
            make_mechanism_name(
                pantin_utils.strip_LR_numbers(strip_org(self.org_bones[1])) +
                '.IK' + self.side_suffix))
        elimb_ik = copy_bone(
            self.obj, self.org_bones[2],
            pantin_utils.strip_LR_numbers(strip_org(self.org_bones[2])) +
            '.IK' + self.side_suffix)

        ulimb_str = copy_bone(
            self.obj, self.org_bones[0],
            make_mechanism_name(
                pantin_utils.strip_LR_numbers(strip_org(self.org_bones[0])) +
                ".stretch.ik" + self.side_suffix))
        flimb_str = copy_bone(
            self.obj, self.org_bones[1],
            make_mechanism_name(
                pantin_utils.strip_LR_numbers(strip_org(self.org_bones[1])) +
                ".stretch.ik" + self.side_suffix))
        elimb_str = copy_bone(
            self.obj, self.org_bones[2],
            make_mechanism_name(
                pantin_utils.strip_LR_numbers(strip_org(self.org_bones[2])) +
                ".stretch.ik" + self.side_suffix))

        joint_str = new_bone(
            self.obj,
            pantin_utils.strip_LR_numbers(strip_org(self.org_bones[1])) +
            '.IK' + self.side_suffix)
        eb[joint_str].head = eb[flimb_str].head
        eb[joint_str].tail = (eb[flimb_str].head + Vector(
            (0, 0, 1)) * eb[flimb_str].length / 2)
        align_bone_x_axis(self.obj, joint_str, Vector((-1, 0, 0)))
        # put_bone(self.obj, joint_str, Vector(eb[flimb_str].head))

        # Pelvis follow
        elimb_ik_root = copy_bone(
            self.obj, self.org_bones[2],
            make_mechanism_name(
                pantin_utils.strip_LR_numbers(strip_org(self.org_bones[2])) +
                ".ik_root" + self.side_suffix))
        elimb_ik_parent = copy_bone(
            self.obj, self.org_bones[2],
            make_mechanism_name(
                pantin_utils.strip_LR_numbers(strip_org(self.org_bones[2])) +
                ".ik_parent" + self.side_suffix))
        elimb_ik_socket = copy_bone(
            self.obj, self.org_bones[2],
            make_mechanism_name(
                pantin_utils.strip_LR_numbers(strip_org(self.org_bones[2])) +
                ".ik_socket" + self.side_suffix))

        # Get edit bones
        ulimb_ik_e = eb[ulimb_ik]
        flimb_ik_e = eb[flimb_ik]
        elimb_ik_e = eb[elimb_ik]

        ulimb_str_e = eb[ulimb_str]
        flimb_str_e = eb[flimb_str]
        elimb_str_e = eb[elimb_str]

        joint_str_e = eb[joint_str]

        elimb_ik_root_e = eb[elimb_ik_root]
        elimb_ik_parent_e = eb[elimb_ik_parent]
        elimb_ik_socket_e = eb[elimb_ik_socket]

        # Parenting

        # Side org chain
        for b, o_b in zip(self.side_org_bones[1:], self.org_bones[1:]):
            eb[b].parent = eb[
                pantin_utils.strip_LR_numbers(eb[o_b].parent.name) +
                self.side_suffix]

        if self.org_parent is not None:
            ulimb_ik_e.use_connect = False
            ulimb_ik_e.parent = eb[self.org_parent]

        flimb_ik_e.use_connect = False
        flimb_ik_e.parent = ulimb_ik_e

        elimb_ik_root_e.use_connect = False
        elimb_ik_root_e.parent = None
        elimb_ik_parent_e.use_connect = False
        elimb_ik_parent_e.parent = eb[self.side_org_bones[0]].parent
        elimb_ik_socket_e.use_connect = False
        elimb_ik_socket_e.parent = None
        elimb_ik_e.use_connect = False
        elimb_ik_e.parent = elimb_ik_socket_e

        if self.org_parent is not None:
            ulimb_str_e.use_connect = False
            ulimb_str_e.parent = eb[self.org_parent]

        flimb_str_e.use_connect = False
        flimb_str_e.parent = joint_str_e

        elimb_str_e.use_connect = True
        elimb_str_e.parent = flimb_ik_e

        joint_str_e.use_connect = False
        joint_str_e.parent = ulimb_ik_e

        # Layers
        joint_str_e.layers = elimb_str_e.layers
        # Object mode, get pose bones
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        ulimb_ik_p = pb[ulimb_ik]
        flimb_ik_p = pb[flimb_ik]
        elimb_ik_p = pb[elimb_ik]

        ulimb_str_p = pb[ulimb_str]
        flimb_str_p = pb[flimb_str]
        elimb_str_p = pb[elimb_str]

        joint_str_p = pb[joint_str]

        joint_str_p.lock_location = (False, False, True)
        joint_str_p.lock_rotation = (True, True, False)
        joint_str_p.lock_rotation_w = False
        joint_str_p.lock_scale = (False, False, False)
        joint_str_p.rotation_mode = 'XZY'

        # Set up custom properties
        prop = rna_idprop_ui_prop_get(elimb_ik_p, "pelvis_follow", create=True)
        elimb_ik_p["pelvis_follow"] = int(self.pelvis_follow)
        prop["soft_min"] = 0
        prop["soft_max"] = 1
        prop["min"] = 0
        prop["max"] = 1

        prop = rna_idprop_ui_prop_get(elimb_ik_p, "IK_FK", create=True)
        elimb_ik_p["IK_FK"] = 0
        prop["soft_min"] = 0
        prop["soft_max"] = 1
        prop["min"] = 0
        prop["max"] = 1

        # Constraints
        # Bend hint, ripped off from Rigify' biped
        con = flimb_ik_p.constraints.new('LIMIT_ROTATION')
        con.name = "bend_hint"
        con.use_limit_z = True
        con.min_z = radians(45)
        con.max_z = radians(45)
        con.owner_space = 'LOCAL'

        con = flimb_ik_p.constraints.new('IK')
        con.name = "ik"
        con.target = self.obj
        con.subtarget = elimb_ik
        con.chain_count = 2

        con = ulimb_str_p.constraints.new('COPY_LOCATION')
        con.name = "anchor"
        con.target = self.obj
        con.subtarget = ulimb_ik
        con.target_space = 'LOCAL'
        con.owner_space = 'LOCAL'

        con = elimb_str_p.constraints.new('COPY_ROTATION')
        con.name = "copy rotation"
        con.target = self.obj
        con.subtarget = elimb_ik
        con.target_space = 'POSE'
        con.owner_space = 'POSE'

        con = ulimb_str_p.constraints.new('STRETCH_TO')
        con.name = "stretch to"
        con.target = self.obj
        con.subtarget = joint_str
        con.volume = 'NO_VOLUME'
        con.rest_length = ulimb_str_p.length
        con.keep_axis = 'PLANE_Z'

        con = flimb_str_p.constraints.new('STRETCH_TO')
        con.name = "stretch to"
        con.target = self.obj
        con.subtarget = elimb_str
        con.volume = 'NO_VOLUME'
        con.rest_length = flimb_str_p.length
        con.keep_axis = 'PLANE_Z'

        # Pelvis follow
        con = pb[elimb_ik_socket].constraints.new('COPY_TRANSFORMS')
        con.name = "copy root"
        con.target = self.obj
        con.subtarget = elimb_ik_root

        con = pb[elimb_ik_socket].constraints.new('COPY_TRANSFORMS')
        con.name = "copy socket"
        con.target = self.obj
        con.subtarget = elimb_ik_parent

        # Drivers
        driver = self.obj.driver_add(con.path_from_id("influence"))
        driver.driver.expression = 'pelvis_follow'
        var = driver.driver.variables.new()

        var.type = 'SINGLE_PROP'
        var.name = 'pelvis_follow'
        var.targets[0].id_type = 'OBJECT'
        var.targets[0].id = self.obj
        var.targets[0].data_path = (pb[elimb_ik].path_from_id() +
                                    '["pelvis_follow"]')

        # IK Limits
        ulimb_ik_p.lock_ik_x = True
        ulimb_ik_p.lock_ik_y = True

        flimb_ik_p.lock_ik_x = True
        flimb_ik_p.lock_ik_y = True
        flimb_ik_p.use_ik_limit_z = True
        flimb_ik_p.ik_min_z = radians(self.ik_limits[0])  # 0.0
        flimb_ik_p.ik_max_z = radians(self.ik_limits[1])  # radians(160.0)

        # Arm ik angle fix
        limb_angle = ulimb_ik_p.vector.xz.angle_signed(flimb_ik_p.vector.xz)
        if self.ik_limits[0] < 0:  # folds counterclockwise (arms)
            # has to be slightly less than the original angle
            flimb_ik_p.ik_max_z = -limb_angle - .02
        else:
            # has to be slightly more than the original angle
            flimb_ik_p.ik_min_z = -limb_angle + .02

        return [
            ulimb_ik, ulimb_str, flimb_ik, flimb_str, joint_str, elimb_ik,
            elimb_str
        ]
Exemple #12
0
    def generate(self):
        """ Generate the rig.
            Do NOT modify any of the original bones, except for adding constraints.
            The main armature should be selected and active before this is called.

        """
        bpy.ops.object.mode_set(mode='EDIT')

        # Create the bones
        uarm = copy_bone(self.obj, self.org_bones[0], make_mechanism_name(strip_org(insert_before_lr(self.org_bones[0], "_ik"))))
        farm = copy_bone(self.obj, self.org_bones[1], make_mechanism_name(strip_org(insert_before_lr(self.org_bones[1], "_ik"))))

        hand = copy_bone(self.obj, self.org_bones[2], strip_org(insert_before_lr(self.org_bones[2], "_ik")))
        pole = copy_bone(self.obj, self.org_bones[0], strip_org(insert_before_lr(self.org_bones[0], "_pole")))

        vishand = copy_bone(self.obj, self.org_bones[2], "VIS-" + strip_org(insert_before_lr(self.org_bones[2], "_ik")))
        vispole = copy_bone(self.obj, self.org_bones[1], "VIS-" + strip_org(insert_before_lr(self.org_bones[0], "_pole")))

        # Get edit bones
        eb = self.obj.data.edit_bones

        uarm_e = eb[uarm]
        farm_e = eb[farm]
        hand_e = eb[hand]
        pole_e = eb[pole]
        vishand_e = eb[vishand]
        vispole_e = eb[vispole]

        # Parenting
        farm_e.parent = uarm_e

        hand_e.use_connect = False
        hand_e.parent = None

        pole_e.use_connect = False

        vishand_e.use_connect = False
        vishand_e.parent = None

        vispole_e.use_connect = False
        vispole_e.parent = None

        # Misc
        hand_e.use_local_location = False

        vishand_e.hide_select = True
        vispole_e.hide_select = True

        # Positioning
        v1 = farm_e.tail - uarm_e.head
        if 'X' in self.primary_rotation_axis or 'Y' in self.primary_rotation_axis:
            v2 = v1.cross(farm_e.x_axis)
            if (v2 * farm_e.z_axis) > 0.0:
                v2 *= -1.0
        else:
            v2 = v1.cross(farm_e.z_axis)
            if (v2 * farm_e.x_axis) < 0.0:
                v2 *= -1.0
        v2.normalize()
        v2 *= v1.length

        if '-' in self.primary_rotation_axis:
            v2 *= -1

        pole_e.head = farm_e.head + v2
        pole_e.tail = pole_e.head + (Vector((0, 1, 0)) * (v1.length / 8))
        pole_e.roll = 0.0

        vishand_e.tail = vishand_e.head + Vector((0, 0, v1.length / 32))
        vispole_e.tail = vispole_e.head + Vector((0, 0, v1.length / 32))

        # Determine the pole offset value
        plane = (farm_e.tail - uarm_e.head).normalized()
        vec1 = uarm_e.x_axis.normalized()
        vec2 = (pole_e.head - uarm_e.head).normalized()
        pole_offset = angle_on_plane(plane, vec1, vec2)

        # Object mode, get pose bones
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        # uarm_p = pb[uarm]  # UNUSED
        farm_p = pb[farm]
        hand_p = pb[hand]
        pole_p = pb[pole]
        vishand_p = pb[vishand]
        vispole_p = pb[vispole]

        # Set the elbow to only bend on the primary axis
        if 'X' in self.primary_rotation_axis:
            farm_p.lock_ik_y = True
            farm_p.lock_ik_z = True
        elif 'Y' in self.primary_rotation_axis:
            farm_p.lock_ik_x = True
            farm_p.lock_ik_z = True
        else:
            farm_p.lock_ik_x = True
            farm_p.lock_ik_y = True

        # Pole target only translates
        pole_p.lock_location = False, False, False
        pole_p.lock_rotation = True, True, True
        pole_p.lock_rotation_w = True
        pole_p.lock_scale = True, True, True

        # Set up custom properties
        if self.switch == True:
            prop = rna_idprop_ui_prop_get(hand_p, "ikfk_switch", create=True)
            hand_p["ikfk_switch"] = 0.0
            prop["soft_min"] = prop["min"] = 0.0
            prop["soft_max"] = prop["max"] = 1.0

        # Bend direction hint
        if self.bend_hint:
            con = farm_p.constraints.new('LIMIT_ROTATION')
            con.name = "bend_hint"
            con.owner_space = 'LOCAL'
            if self.primary_rotation_axis == 'X':
                con.use_limit_x = True
                con.min_x = pi / 10
                con.max_x = pi / 10
            elif self.primary_rotation_axis == '-X':
                con.use_limit_x = True
                con.min_x = -pi / 10
                con.max_x = -pi / 10
            elif self.primary_rotation_axis == 'Y':
                con.use_limit_y = True
                con.min_y = pi / 10
                con.max_y = pi / 10
            elif self.primary_rotation_axis == '-Y':
                con.use_limit_y = True
                con.min_y = -pi / 10
                con.max_y = -pi / 10
            elif self.primary_rotation_axis == 'Z':
                con.use_limit_z = True
                con.min_z = pi / 10
                con.max_z = pi / 10
            elif self.primary_rotation_axis == '-Z':
                con.use_limit_z = True
                con.min_z = -pi / 10
                con.max_z = -pi / 10

        # IK Constraint
        con = farm_p.constraints.new('IK')
        con.name = "ik"
        con.target = self.obj
        con.subtarget = hand
        con.pole_target = self.obj
        con.pole_subtarget = pole
        con.pole_angle = pole_offset
        con.chain_count = 2

        # Constrain org bones to controls
        con = pb[self.org_bones[0]].constraints.new('COPY_TRANSFORMS')
        con.name = "ik"
        con.target = self.obj
        con.subtarget = uarm
        if self.switch == True:
            # IK/FK switch driver
            fcurve = con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'AVERAGE'
            var.name = "var"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = hand_p.path_from_id() + '["ikfk_switch"]'

        con = pb[self.org_bones[1]].constraints.new('COPY_TRANSFORMS')
        con.name = "ik"
        con.target = self.obj
        con.subtarget = farm
        if self.switch == True:
            # IK/FK switch driver
            fcurve = con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'AVERAGE'
            var.name = "var"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = hand_p.path_from_id() + '["ikfk_switch"]'

        con = pb[self.org_bones[2]].constraints.new('COPY_TRANSFORMS')
        con.name = "ik"
        con.target = self.obj
        con.subtarget = hand
        if self.switch == True:
            # IK/FK switch driver
            fcurve = con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'AVERAGE'
            var.name = "var"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = hand_p.path_from_id() + '["ikfk_switch"]'

        # VIS hand constraints
        con = vishand_p.constraints.new('COPY_LOCATION')
        con.name = "copy_loc"
        con.target = self.obj
        con.subtarget = self.org_bones[2]

        con = vishand_p.constraints.new('STRETCH_TO')
        con.name = "stretch_to"
        con.target = self.obj
        con.subtarget = hand
        con.volume = 'NO_VOLUME'
        con.rest_length = vishand_p.length

        # VIS pole constraints
        con = vispole_p.constraints.new('COPY_LOCATION')
        con.name = "copy_loc"
        con.target = self.obj
        con.subtarget = self.org_bones[1]

        con = vispole_p.constraints.new('STRETCH_TO')
        con.name = "stretch_to"
        con.target = self.obj
        con.subtarget = pole
        con.volume = 'NO_VOLUME'
        con.rest_length = vispole_p.length

        # Set layers if specified
        if self.layers:
            hand_p.bone.layers = self.layers
            pole_p.bone.layers = self.layers
            vishand_p.bone.layers = self.layers
            vispole_p.bone.layers = self.layers

        # Create widgets
        create_line_widget(self.obj, vispole)
        create_line_widget(self.obj, vishand)
        create_sphere_widget(self.obj, pole)

        ob = create_widget(self.obj, hand)
        if ob != None:
            verts = [(0.7, 1.5, 0.0), (0.7, -0.25, 0.0), (-0.7, -0.25, 0.0), (-0.7, 1.5, 0.0), (0.7, 0.723, 0.0), (-0.7, 0.723, 0.0), (0.7, 0.0, 0.0), (-0.7, 0.0, 0.0)]
            edges = [(1, 2), (0, 3), (0, 4), (3, 5), (4, 6), (1, 6), (5, 7), (2, 7)]
            mesh = ob.data
            mesh.from_pydata(verts, edges, [])
            mesh.update()

            mod = ob.modifiers.new("subsurf", 'SUBSURF')
            mod.levels = 2

        return [uarm, farm, hand, pole]
    def gen_control(self):
        """ Generate the control rig.

        """
        #---------------------------------
        # Create the neck and head controls
        bpy.ops.object.mode_set(mode='EDIT')

        # Create bones
        neck_ctrl = copy_bone(self.obj, self.org_bones[0], strip_org(self.org_bones[0]))
        neck_follow = copy_bone(self.obj, self.org_bones[-1], make_mechanism_name(strip_org(self.org_bones[0] + ".follow")))
        neck_child = new_bone(self.obj, make_mechanism_name(strip_org(self.org_bones[0] + ".child")))

        head_ctrl = copy_bone(self.obj, self.org_bones[-1], strip_org(self.org_bones[-1]))
        head_mch = new_bone(self.obj, make_mechanism_name(strip_org(self.org_bones[-1])))
        if self.isolate:
            head_socket1 = copy_bone(self.obj, self.org_bones[-1], make_mechanism_name(strip_org(self.org_bones[-1] + ".socket1")))
            head_socket2 = copy_bone(self.obj, self.org_bones[-1], make_mechanism_name(strip_org(self.org_bones[-1] + ".socket2")))

        # Create neck chain bones
        neck = []
        helpers = []
        for name in self.org_bones:
            neck += [copy_bone(self.obj, name, make_mechanism_name(strip_org(name)))]
            helpers += [copy_bone(self.obj, neck_child, make_mechanism_name(strip_org(name + ".02")))]

        # Fetch edit bones
        eb = self.obj.data.edit_bones

        neck_ctrl_e = eb[neck_ctrl]
        neck_follow_e = eb[neck_follow]
        neck_child_e = eb[neck_child]
        head_ctrl_e = eb[head_ctrl]
        head_mch_e = eb[head_mch]
        if self.isolate:
            head_socket1_e = eb[head_socket1]
            head_socket2_e = eb[head_socket2]

        # Parenting
        head_ctrl_e.use_connect = False
        head_ctrl_e.parent = neck_ctrl_e.parent
        head_mch_e.use_connect = False
        head_mch_e.parent = head_ctrl_e

        if self.isolate:
            head_socket1_e.use_connect = False
            head_socket1_e.parent = neck_ctrl_e.parent

            head_socket2_e.use_connect = False
            head_socket2_e.parent = None

            head_ctrl_e.parent = head_socket2_e

        for (name1, name2) in zip(neck, helpers):
            eb[name1].use_connect = False
            eb[name1].parent = eb[name2]
            eb[name2].use_connect = False
            eb[name2].parent = neck_ctrl_e.parent

        neck_follow_e.use_connect = False
        neck_follow_e.parent = neck_ctrl_e.parent
        neck_child_e.use_connect = False
        neck_child_e.parent = neck_ctrl_e
        neck_ctrl_e.parent = neck_follow_e

        # Position
        put_bone(self.obj, neck_follow, neck_ctrl_e.head)
        put_bone(self.obj, neck_child, neck_ctrl_e.head)
        put_bone(self.obj, head_ctrl, neck_ctrl_e.head)
        put_bone(self.obj, head_mch, neck_ctrl_e.head)
        head_mch_e.length = head_ctrl_e.length / 2
        neck_child_e.length = neck_ctrl_e.length / 2

        if self.isolate:
            put_bone(self.obj, head_socket1, neck_ctrl_e.head)
            head_mch_e.length /= 2

            put_bone(self.obj, head_socket2, neck_ctrl_e.head)
            head_mch_e.length /= 3

        for (name1, name2) in zip(neck, helpers):
            put_bone(self.obj, name2, eb[name1].head)
            eb[name2].length = eb[name1].length / 2

        # Switch to object mode
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones
        neck_ctrl_p = pb[neck_ctrl]
        neck_follow_p = pb[neck_follow]
        # neck_child_p = pb[neck_child]  # UNUSED
        head_ctrl_p = pb[head_ctrl]
        if self.isolate:
            # head_socket1_p = pb[head_socket1]  # UNUSED
            head_socket2_p = pb[head_socket2]

        # Custom bone appearance
        neck_ctrl_p.custom_shape_transform = pb[self.org_bones[(len(self.org_bones) - 1) // 2]]
        head_ctrl_p.custom_shape_transform = pb[self.org_bones[-1]]

        # Custom properties
        prop = rna_idprop_ui_prop_get(head_ctrl_p, "inf_extent", create=True)
        head_ctrl_p["inf_extent"] = 0.5
        prop["min"] = 0.0
        prop["max"] = 1.0
        prop["soft_min"] = 0.0
        prop["soft_max"] = 1.0

        prop = rna_idprop_ui_prop_get(head_ctrl_p, "neck_follow", create=True)
        head_ctrl_p["neck_follow"] = 1.0
        prop["min"] = 0.0
        prop["max"] = 2.0
        prop["soft_min"] = 0.0
        prop["soft_max"] = 1.0

        if self.isolate:
            prop = rna_idprop_ui_prop_get(head_ctrl_p, "isolate", create=True)
            head_ctrl_p["isolate"] = 0.0
            prop["min"] = 0.0
            prop["max"] = 1.0
            prop["soft_min"] = 0.0
            prop["soft_max"] = 1.0

        # Constraints

        # Neck follow
        con = neck_follow_p.constraints.new('COPY_ROTATION')
        con.name = "copy_rotation"
        con.target = self.obj
        con.subtarget = head_ctrl

        fcurve = con.driver_add("influence")
        driver = fcurve.driver
        var = driver.variables.new()
        driver.type = 'SCRIPTED'
        var.name = "follow"
        var.targets[0].id_type = 'OBJECT'
        var.targets[0].id = self.obj
        var.targets[0].data_path = head_ctrl_p.path_from_id() + '["neck_follow"]'
        driver.expression = "follow / 2"

        # Isolate
        if self.isolate:
            con = head_socket2_p.constraints.new('COPY_LOCATION')
            con.name = "copy_location"
            con.target = self.obj
            con.subtarget = head_socket1

            con = head_socket2_p.constraints.new('COPY_TRANSFORMS')
            con.name = "copy_transforms"
            con.target = self.obj
            con.subtarget = head_socket1

            fcurve = con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'SCRIPTED'
            var.name = "isolate"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = head_ctrl_p.path_from_id() + '["isolate"]'
            driver.expression = "1.0 - isolate"

        # Neck chain
        first = True
        prev = None
        i = 0
        l = len(neck)
        for (name1, name2, org_name) in zip(neck, helpers, self.org_bones):
            con = pb[org_name].constraints.new('COPY_TRANSFORMS')
            con.name = "copy_transforms"
            con.target = self.obj
            con.subtarget = name1

            n_con = pb[name2].constraints.new('COPY_TRANSFORMS')
            n_con.name = "neck"
            n_con.target = self.obj
            n_con.subtarget = neck_child

            h_con = pb[name2].constraints.new('COPY_TRANSFORMS')
            h_con.name = "head"
            h_con.target = self.obj
            h_con.subtarget = head_mch

            con = pb[name2].constraints.new('COPY_LOCATION')
            con.name = "anchor"
            con.target = self.obj
            if first:
                con.subtarget = neck_ctrl
            else:
                con.subtarget = prev
                con.head_tail = 1.0

            # Drivers
            n = (i + 1) / l

            # Neck influence
            fcurve = n_con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'SCRIPTED'
            var.name = "ext"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = head_ctrl_p.path_from_id() + '["inf_extent"]'
            driver.expression = "1.0 if (%.4f > (1.0-ext) or (1.0-ext) == 0.0) else (%.4f / (1.0-ext))" % (n, n)

            # Head influence
            if (i + 1) == l:
                h_con.influence = 1.0
            else:
                fcurve = h_con.driver_add("influence")
                driver = fcurve.driver
                var = driver.variables.new()
                driver.type = 'SCRIPTED'
                var.name = "ext"
                var.targets[0].id_type = 'OBJECT'
                var.targets[0].id = self.obj
                var.targets[0].data_path = head_ctrl_p.path_from_id() + '["inf_extent"]'
                driver.expression = "0.0 if (%.4f <= (1.0-ext)) else ((%.4f - (1.0-ext)) / ext)" % (n, n)

            first = False
            prev = name1
            i += 1

        # Create control widgets
        w1 = create_circle_widget(self.obj, neck_ctrl, radius=1.0, head_tail=0.5)
        w2 = create_circle_widget(self.obj, head_ctrl, radius=1.0, head_tail=0.5)

        if w1 != None:
            obj_to_bone(w1, self.obj, self.org_bones[(len(self.org_bones) - 1) // 2])
        if w2 != None:
            obj_to_bone(w2, self.obj, self.org_bones[-1])

        # Return control bones
        return (head_ctrl, neck_ctrl)
Exemple #14
0
    def control(self):
        """ Generate the control rig.
        """
        bpy.ops.object.mode_set(mode='EDIT')

        # Figure out the name for the control bone (remove the last .##)
        ctrl_name = re.sub("([0-9]+\.)",
                           "",
                           strip_org(self.org_bones[0])[::-1],
                           count=1)[::-1]

        # Create the bones
        ctrl = copy_bone(self.obj, self.org_bones[0], ctrl_name)

        helpers = []
        bones = []
        for bone in self.org_bones:
            bones += [copy_bone(self.obj, bone, strip_org(bone))]
            helpers += [
                copy_bone(self.obj, bone, make_mechanism_name(strip_org(bone)))
            ]

        # Position bones
        eb = self.obj.data.edit_bones

        length = 0.0
        for bone in helpers:
            length += eb[bone].length
            eb[bone].length /= 2

        eb[ctrl].length = length * 1.5

        # Parent bones
        prev = eb[self.org_bones[0]].parent
        for (b, h) in zip(bones, helpers):
            b_e = eb[b]
            h_e = eb[h]
            b_e.use_connect = False
            h_e.use_connect = False

            b_e.parent = h_e
            h_e.parent = prev

            prev = b_e

        # Transform locks and rotation mode
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        for bone in bones[1:]:
            pb[bone].lock_location = True, True, True

        if pb[self.org_bones[0]].bone.use_connect is True:
            pb[bones[0]].lock_location = True, True, True

        pb[ctrl].lock_scale = True, False, True

        for bone in helpers:
            pb[bone].rotation_mode = 'XYZ'

        # Drivers
        i = 1
        val = 1.2 / (len(self.org_bones) - 1)
        for bone in helpers:
            # Add custom prop
            prop_name = "bend_%02d" % i
            prop = rna_idprop_ui_prop_get(pb[ctrl], prop_name, create=True)
            prop["min"] = 0.0
            prop["max"] = 1.0
            prop["soft_min"] = 0.0
            prop["soft_max"] = 1.0
            if i == 1:
                pb[ctrl][prop_name] = 0.0
            else:
                pb[ctrl][prop_name] = val

            # Add driver
            if 'X' in self.primary_rotation_axis:
                fcurve = pb[bone].driver_add("rotation_euler", 0)
            elif 'Y' in self.primary_rotation_axis:
                fcurve = pb[bone].driver_add("rotation_euler", 1)
            else:
                fcurve = pb[bone].driver_add("rotation_euler", 2)

            driver = fcurve.driver
            driver.type = 'SCRIPTED'

            var = driver.variables.new()
            var.name = "ctrl_y"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = pb[ctrl].path_from_id() + '.scale[1]'

            var = driver.variables.new()
            var.name = "bend"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = pb[ctrl].path_from_id(
            ) + '["' + prop_name + '"]'

            if '-' in self.primary_rotation_axis:
                driver.expression = "-(1.0-ctrl_y) * bend * 3.14159 * 2"
            else:
                driver.expression = "(1.0-ctrl_y) * bend * 3.14159 * 2"

            i += 1

        # Constraints
        con = pb[helpers[0]].constraints.new('COPY_LOCATION')
        con.name = "copy_location"
        con.target = self.obj
        con.subtarget = ctrl

        con = pb[helpers[0]].constraints.new('COPY_ROTATION')
        con.name = "copy_rotation"
        con.target = self.obj
        con.subtarget = ctrl

        # Constrain org bones to the control bones
        for (bone, org) in zip(bones, self.org_bones):
            con = pb[org].constraints.new('COPY_TRANSFORMS')
            con.name = "copy_transforms"
            con.target = self.obj
            con.subtarget = bone

        # Set layers for extra control bones
        if self.ex_layers:
            for bone in bones:
                pb[bone].bone.layers = self.ex_layers

        # Create control widgets
        w = create_widget(self.obj, ctrl)
        if w is not None:
            mesh = w.data
            verts = [(0, 0, 0), (0, 1, 0), (0.05, 1, 0), (0.05, 1.1, 0),
                     (-0.05, 1.1, 0), (-0.05, 1, 0)]
            if 'Z' in self.primary_rotation_axis:
                # Flip x/z coordinates
                temp = []
                for v in verts:
                    temp += [(v[2], v[1], v[0])]
                verts = temp
            edges = [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 1)]
            mesh.from_pydata(verts, edges, [])
            mesh.update()

        for bone in bones:
            create_limb_widget(self.obj, bone)
    def generate(self):
        bpy.ops.object.mode_set(mode='EDIT')

        eb = self.obj.data.edit_bones

        trackers = []
        flaps = []
        flaps_MCH = []

        # Left and right tracking bones
        for side in ['.L', '.R']:
            tracker = copy_bone(
                self.obj, self.org_bone,
                make_mechanism_name(
                    strip_org(self.org_bone)) + side
            )
            trackers.append(tracker)

        vertical = copy_bone(
            self.obj, self.org_bone,
            make_mechanism_name(
                strip_org(self.org_bone)) + '.vertical'
        )

        # Front and rear bones
        for i, flap in enumerate(['.Front', '.Rear']):
            flap_mch_b = copy_bone(
                self.obj, self.org_bone,
                make_mechanism_name(
                    strip_org(self.org_bone)) + flap
            )
            flaps_MCH.append(flap_mch_b)
            flap_b = copy_bone(
                self.obj, self.org_bone,
                strip_org(self.org_bone) + flap
            )
            flaps.append(flap_b)

            # Def bones
            def_bone = pantin_utils.create_deformation(
                self.obj, flap_b,
                member_index=self.params.Z_index,
                bone_index=i,
                new_name=strip_org(self.org_bone) + flap)

            # Parenting
            eb[flap_b].parent = eb[flap_mch_b]
            eb[flap_b].use_connect = False

        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        # Constraints

        con = pb[vertical].constraints.new('COPY_ROTATION')
        con.name = "Copy Pelvis"
        con.target = self.obj
        con.subtarget = pb[self.org_bone].parent.name
        con.use_x = False
        con.use_y = False
        con.use_z = True
        con.invert_z = True
        con.target_space = 'LOCAL'
        con.owner_space = 'LOCAL'

        for f, shin in zip(trackers, (self.params.shin_name_l,
                                   self.params.shin_name_r)
                           ):
            con = pb[f].constraints.new('DAMPED_TRACK')
            con.name = "Track " + shin
            con.target = self.obj
            con.subtarget = "ORG-" + shin

        for f in flaps:
            # Widgets
            widget_size = pb[f].length
            pantin_utils.create_capsule_widget(
                self.obj,
                f,
                length=widget_size,
                width=widget_size*0.2,
                head_tail=0.5,
                horizontal=False
            )

        for f_i, f in enumerate(flaps_MCH):
            con = pb[f].constraints.new('DAMPED_TRACK')
            con.name = "Track vertical"
            con.target = self.obj
            con.subtarget = vertical
            con.head_tail = 1.0

            for s_i, shin in enumerate((self.params.shin_name_l, self.params.shin_name_r)):
                con = pb[f].constraints.new('DAMPED_TRACK')
                con.name = "Track " + shin
                con.target = self.obj
                con.subtarget = "ORG-" + shin

                # Drivers
                driver = self.obj.driver_add(con.path_from_id("influence"))

                # Relative component: which leg to track
                if f_i != s_i:
                    relative = 'L > R'
                else:
                    relative = 'L <= R'

                if s_i == 0:  # Left
                    absolute = 'L+P '
                else:  # Right
                    absolute = 'R+P '

                # Absolute component: do not track if rotation is below / above 0
                if f_i == 0:  # Front
                    absolute += ' < 0'
                else:  # Rear
                    absolute += ' > 0'

                driver.driver.expression = '1 if {} and {} else 0'.format(relative, absolute)

                var = driver.driver.variables.new()
                var.type = 'TRANSFORMS'
                var.name = 'L'
                var.targets[0].id = self.obj
                var.targets[0].bone_target = trackers[0]
                var.targets[0].transform_type = 'ROT_Z'
                var.targets[0].transform_space = 'LOCAL_SPACE'

                var = driver.driver.variables.new()
                var.type = 'TRANSFORMS'
                var.name = 'R'
                var.targets[0].id = self.obj
                var.targets[0].bone_target = trackers[1]
                var.targets[0].transform_type = 'ROT_Z'
                var.targets[0].transform_space = 'LOCAL_SPACE'

                var = driver.driver.variables.new()
                var.type = 'TRANSFORMS'
                var.name = 'P'
                var.targets[0].id = self.obj
                var.targets[0].bone_target = pb[self.org_bone].parent.name
                var.targets[0].transform_type = 'ROT_Z'
                var.targets[0].transform_space = 'LOCAL_SPACE'

        return {
            'imports': UI_IMPORTS,
            'utilities': PANTIN_UTILS,
            'register': PANTIN_REGISTER,
            'register_props': REGISTER_PANTIN_PROPS,
        }
    def create_chain(self):
        org_bones = self.org_bones

        bpy.ops.object.mode_set(mode='EDIT')
        eb = self.obj.data.edit_bones

        twk, mch, mch_ctrl, ctrl = [], [], [], []

        suffix = ''
        if '.L' in org_bones[0]:
            suffix = '.L'
        elif '.R' in org_bones[0]:
            suffix = '.R'

        mch_auto = ''
        if not self.SINGLE_BONE:
            mch_name = copy_bone(
                self.obj, org(org_bones[0]),
                'MCH-AUTO-' + strip_org(org_bones[0]).split('.')[0] + suffix)
            eb[mch_name].head = eb[org_bones[0]].head
            eb[mch_name].tail = eb[org_bones[-1]].tail

            mch_auto = mch_name

        # Intermediary bones
        for b in org_bones:  # All

            if self.SINGLE_BONE:
                mch_name = copy_bone(self.obj, org(b),
                                     make_mechanism_name(strip_org(b)))
                eb[mch_name].length /= 4
                put_bone(self.obj, mch_name,
                         eb[b].head - (eb[mch_name].tail - eb[mch_name].head))
                align_bone_z_axis(self.obj, mch_name, eb[b].z_axis)
                mch += [mch_name]
                mch_name = copy_bone(self.obj, org(b),
                                     make_mechanism_name(strip_org(b)))
                eb[mch_name].length /= 4
                put_bone(self.obj, mch_name, eb[b].tail)
                mch += [mch_name]
                break
            else:
                mch_name = copy_bone(self.obj, org(b),
                                     make_mechanism_name(strip_org(b)))
                eb[mch_name].length /= 4

                mch += [mch_name]

                if b == org_bones[-1]:  # Add extra
                    mch_name = copy_bone(self.obj, org(b),
                                         make_mechanism_name(strip_org(b)))
                    eb[mch_name].length /= 4
                    put_bone(self.obj, mch_name, eb[b].tail)
                    mch += [mch_name]

        # Tweak & Ctrl bones
        v = eb[org_bones[-1]].tail - eb[org_bones[
            0]].head  # Create a vector from head of first ORG to tail of last
        v.normalize()
        v_proj = eb[org_bones[0]].y_axis.dot(
            v) * v  # projection of first ORG to v
        v_point = eb[org_bones[
            0]].y_axis - v_proj  # a vector co-planar to first ORG and v directed out of the chain

        if v_point.magnitude < eb[org_bones[0]].y_axis.magnitude * 1e-03:
            v_point = eb[org_bones[0]].x_axis

        for b in org_bones:  # All

            suffix = ''
            if '.L' in b:
                suffix = '.L'
            elif '.R' in b:
                suffix = '.R'

            if b == org_bones[0]:
                name = get_bone_name(b.split('.')[0] + suffix, 'ctrl', 'ctrl')
                if self.params.use_parent_ctrls:
                    name = make_mechanism_name(name)
                name = copy_bone(self.obj, org(b), name)
                align_bone_x_axis(self.obj, name, eb[org(b)].x_axis)
                ctrl += [name]
            else:
                name = 'tweak_' + strip_org(b)
                name = copy_bone(self.obj, org(b), name)
                twk += [name]

            self.orient_bone(eb[name], 'y', eb[name].length / 2)

            if self.params.tweak_axis == 'auto':
                align_bone_y_axis(self.obj, name, v)
                align_bone_z_axis(self.obj, name, -v_point)  # invert?
            elif self.params.tweak_axis == 'x':
                align_bone_y_axis(self.obj, name, Vector((1, 0, 0)))
                align_bone_x_axis(self.obj, name, Vector((0, 0, 1)))
            elif self.params.tweak_axis == 'y':
                align_bone_y_axis(self.obj, name, Vector((0, 1, 0)))
                align_bone_x_axis(self.obj, name, Vector((1, 0, 0)))
            elif self.params.tweak_axis == 'z':
                align_bone_y_axis(self.obj, name, Vector((0, 0, 1)))
                align_bone_x_axis(self.obj, name, Vector((1, 0, 0)))

            if b == org_bones[-1]:  # Add extra
                ctrl_name = get_bone_name(
                    b.split('.')[0] + suffix, 'ctrl', 'ctrl')
                if self.params.use_parent_ctrls:
                    ctrl_name = make_mechanism_name(ctrl_name)
                ctrl_name = copy_bone(self.obj, org(b), ctrl_name)

                self.orient_bone(eb[ctrl_name], 'y', eb[ctrl_name].length / 2)

                if self.params.conv_bone:
                    align_bone_y_axis(self.obj, ctrl_name,
                                      eb[org(self.params.conv_bone)].y_axis)
                    align_bone_x_axis(self.obj, ctrl_name,
                                      eb[org(self.params.conv_bone)].x_axis)
                    align_bone_z_axis(self.obj, ctrl_name,
                                      eb[org(self.params.conv_bone)].z_axis)

                else:
                    if twk:
                        lastname = twk[-1]
                    else:
                        lastname = ctrl[-1]
                    align_bone_y_axis(self.obj, ctrl_name, eb[lastname].y_axis)
                    align_bone_x_axis(self.obj, ctrl_name, eb[lastname].x_axis)
                put_bone(self.obj, ctrl_name, eb[b].tail)

                ctrl += [ctrl_name]

        conv_twk = ''
        # Convergence tweak
        if self.params.conv_bone:
            conv_twk = 'tweak_' + strip_org(self.params.conv_bone)

            if not (conv_twk in eb.keys()):
                conv_twk = copy_bone(self.obj, org(self.params.conv_bone),
                                     conv_twk)

        for b in org_bones:

            if self.SINGLE_BONE:
                break

            # Mch controls
            suffix = ''
            if '.L' in b:
                suffix = '.L'
            elif '.R' in b:
                suffix = '.R'

            mch_ctrl_name = "MCH-CTRL-" + strip_org(b).split('.')[0] + suffix
            mch_ctrl_name = copy_bone(self.obj, twk[0] if twk else ctrl[0],
                                      mch_ctrl_name)

            eb[mch_ctrl_name].length /= 6

            put_bone(self.obj, mch_ctrl_name, eb[b].head)

            mch_ctrl += [mch_ctrl_name]

            if b == org_bones[-1]:  # Add extra
                mch_ctrl_name = "MCH-CTRL-" + strip_org(b).split(
                    '.')[0] + suffix
                mch_ctrl_name = copy_bone(self.obj, twk[0] if twk else ctrl[0],
                                          mch_ctrl_name)

                eb[mch_ctrl_name].length /= 6

                put_bone(self.obj, mch_ctrl_name, eb[b].tail)

                mch_ctrl += [mch_ctrl_name]

        return {
            'mch': mch,
            'mch_ctrl': mch_ctrl,
            'mch_auto': mch_auto,
            'tweak': twk,
            'ctrl': ctrl,
            'conv': conv_twk
        }
Exemple #17
0
    def generate(self):
        bpy.ops.object.mode_set(mode='EDIT')

        eb = self.obj.data.edit_bones

        pelvis = self.org_bones[0]
        pelvis_e = eb[pelvis]

        # # Intermediate root bone
        # root_name = self.params.root_name
        # root = new_bone(self.obj, root_name)
        # root_e = eb[root]
        # root_e.head = Vector((0, 0, 0))
        # root_e.tail = Vector((0, 0, 1)) * pelvis_e.length/2
        # align_bone_x_axis(self.obj, root, Vector((-1, 0, 0)))
        # root_e.layers = [i == 28 for i in range(32)]

        # # Flip bone
        # flip = new_bone(self.obj, make_mechanism_name('Flip'))
        # flip_e = eb[flip]
        #
        # flip_e.head = pelvis_e.head
        # flip_e.tail = flip_e.head + Vector((0, 0, 1)) * pelvis_e.length/2
        # align_bone_x_axis(self.obj, flip, Vector((-1, 0, 0)))

        # root_e = eb[root]

        # flip_e.use_connect = False
        # flip_e.parent = root_e

        ctrl_chain = []
        def_chain = []
        for i, b in enumerate(self.org_bones):
            # Control bones
            ctrl_bone = copy_bone(self.obj, b)
            ctrl_bone_e = eb[ctrl_bone]

            # Name
            ctrl_bone_e.name = ctrl_bone = strip_org(b)

            # Parenting
            if i == 0:
                # First bone

                # Vertical intermediate pelvis (animation helper)
                inter_pelvis = copy_bone(
                    self.obj, b,
                    make_mechanism_name(strip_org(b) + '.intermediate'))

                ctrl_bone_e = eb[ctrl_bone]
                ctrl_bone_e.tail = ctrl_bone_e.head
                ctrl_bone_e.tail[2] += 1.0 * eb[b].length
                align_bone_z_axis(self.obj, ctrl_bone, Vector((0, 1, 0)))

                ctrl_bone_e = eb[ctrl_bone]
                # ctrl_bone_e.parent = eb[self.org_bones[0]].parent
                # eb[ctrl_bone].parent = None
                eb[inter_pelvis].parent = ctrl_bone_e
            elif i == 1:
                ctrl_bone_e.parent = eb[inter_pelvis]
            else:
                # The rest
                ctrl_bone_e.parent = eb[ctrl_chain[-1]]

            # Add to list
            ctrl_chain += [ctrl_bone_e.name]

            # Def bones
            def_bone = pantin_utils.create_deformation(
                self.obj, b, member_index=self.params.Z_index, bone_index=i)
            def_chain.append(def_bone)

        # flip_e = eb[flip]
        pelvis_e = eb[ctrl_chain[0]]
        pelvis_e.use_connect = False
        # pelvis_e.parent = flip_e

        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        # # Pose bone settings
        # flip_p = pb[flip]
        # flip_p.rotation_mode = 'XZY'

        # root_p = pb[root]
        # root_p.lock_location = (False, False, True)
        # root_p.lock_rotation = (True, True, False)
        # root_p.lock_rotation_w = False
        # root_p.lock_scale = (False, False, False)
        # root_p.rotation_mode = 'XZY'

        # # Set up custom properties
        # prop = rna_idprop_ui_prop_get(flip_p, "flip", create=True)
        # flip_p["flip"] = 0
        # prop["soft_min"] = 0
        # prop["soft_max"] = 1
        # prop["min"] = 0
        # prop["max"] = 1

        # Widgets
        global_scale = self.obj.dimensions[2]
        member_factor = 0.1
        widget_size = global_scale * member_factor
        pelvis = ctrl_chain[0]
        # abdomen = ctrl_chain[1]
        # torso = ctrl_chain[2]
        # shoulder = ctrl_chain[3]

        # create_cube_widget(self.obj, pelvis, radius=widget_size*4)
        radius = widget_size
        pelvis_center = pb[pelvis].center
        vp = ((-radius * 2.0 + pelvis_center.x, -radius + pelvis_center.z),
              (-radius * 2.0 + pelvis_center.x, radius + pelvis_center.z),
              (radius * 2.0 + pelvis_center.x, radius + pelvis_center.z),
              (radius * 2.0 + pelvis_center.x, -radius + pelvis_center.z))
        pantin_utils.create_aligned_polygon_widget(self.obj,
                                                   pelvis,
                                                   vertex_points=vp)
        # pantin_utils.create_aligned_half_ellipse_widget(
        #     self.obj, root, width=widget_size*1.5, height=widget_size)

        for bone in ctrl_chain[1:]:
            pantin_utils.create_capsule_widget(self.obj,
                                               bone,
                                               length=widget_size,
                                               width=widget_size * 0.1,
                                               head_tail=0.5)
            # create_widget(self.obj, bone)

        # Drivers
        # driver = self.obj.driver_add(
        #     'pose.bones["{}"].rotation_euler'.format(flip), 1)
        # driver.driver.expression = 'pi*flip'
        # var_flip = driver.driver.variables.new()
        #
        # var_flip.type = 'SINGLE_PROP'
        # var_flip.name = 'flip'
        # var_flip.targets[0].id_type = 'OBJECT'
        # var_flip.targets[0].id = self.obj
        # var_flip.targets[0].data_path = 'pose.bones["root"]["flip"]'.format(flip)

        # Constraints
        # for pelvis
        con = pb[self.org_bones[0]].constraints.new('COPY_TRANSFORMS')
        con.name = "copy_transforms"
        con.target = self.obj
        con.subtarget = inter_pelvis

        # for others
        for org, ctrl in zip(self.org_bones[1:], ctrl_chain[1:]):
            con = pb[org].constraints.new('COPY_TRANSFORMS')
            con.name = "copy_transforms"
            con.target = self.obj
            con.subtarget = ctrl

        return {
            'script': [UI_PANTIN_SCRIPT],
            'imports': UI_IMPORTS,
            'utilities': PANTIN_UTILS,
            'register': PANTIN_REGISTER,
            'register_props': REGISTER_PANTIN_PROPS,
        }
Exemple #18
0
    def generate(self):
        """ Generate the rig.
            Do NOT modify any of the original bones, except for adding constraints.
            The main armature should be selected and active before this is called.

        """
        bpy.ops.object.mode_set(mode='EDIT')

        # Create the bones
        uarm = copy_bone(self.obj, self.org_bones[0], make_mechanism_name(strip_org(insert_before_lr(self.org_bones[0], "_ik"))))
        farm = copy_bone(self.obj, self.org_bones[1], make_mechanism_name(strip_org(insert_before_lr(self.org_bones[1], "_ik"))))

        hand = copy_bone(self.obj, self.org_bones[2], strip_org(insert_before_lr(self.org_bones[2], "_ik")))
        pole = copy_bone(self.obj, self.org_bones[0], strip_org(insert_before_lr(self.org_bones[0], "_pole")))

        vishand = copy_bone(self.obj, self.org_bones[2], "VIS-" + strip_org(insert_before_lr(self.org_bones[2], "_ik")))
        vispole = copy_bone(self.obj, self.org_bones[1], "VIS-" + strip_org(insert_before_lr(self.org_bones[0], "_pole")))

        # Get edit bones
        eb = self.obj.data.edit_bones

        uarm_e = eb[uarm]
        farm_e = eb[farm]
        hand_e = eb[hand]
        pole_e = eb[pole]
        vishand_e = eb[vishand]
        vispole_e = eb[vispole]

        # Parenting
        farm_e.parent = uarm_e

        hand_e.use_connect = False
        hand_e.parent = None

        pole_e.use_connect = False

        vishand_e.use_connect = False
        vishand_e.parent = None

        vispole_e.use_connect = False
        vispole_e.parent = None

        # Misc
        hand_e.use_local_location = False

        vishand_e.hide_select = True
        vispole_e.hide_select = True

        # Positioning
        v1 = farm_e.tail - uarm_e.head
        if 'X' in self.primary_rotation_axis or 'Y' in self.primary_rotation_axis:
            v2 = v1.cross(farm_e.x_axis)
            if (v2 * farm_e.z_axis) > 0.0:
                v2 *= -1.0
        else:
            v2 = v1.cross(farm_e.z_axis)
            if (v2 * farm_e.x_axis) < 0.0:
                v2 *= -1.0
        v2.normalize()
        v2 *= v1.length

        if '-' in self.primary_rotation_axis:
            v2 *= -1

        pole_e.head = farm_e.head + v2
        pole_e.tail = pole_e.head + (Vector((0, 1, 0)) * (v1.length / 8))
        pole_e.roll = 0.0

        vishand_e.tail = vishand_e.head + Vector((0, 0, v1.length / 32))
        vispole_e.tail = vispole_e.head + Vector((0, 0, v1.length / 32))

        # Determine the pole offset value
        plane = (farm_e.tail - uarm_e.head).normalized()
        vec1 = uarm_e.x_axis.normalized()
        vec2 = (pole_e.head - uarm_e.head).normalized()
        pole_offset = angle_on_plane(plane, vec1, vec2)

        # Object mode, get pose bones
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        # uarm_p = pb[uarm]  # UNUSED
        farm_p = pb[farm]
        hand_p = pb[hand]
        pole_p = pb[pole]
        vishand_p = pb[vishand]
        vispole_p = pb[vispole]

        # Set the elbow to only bend on the primary axis
        if 'X' in self.primary_rotation_axis:
            farm_p.lock_ik_y = True
            farm_p.lock_ik_z = True
        elif 'Y' in self.primary_rotation_axis:
            farm_p.lock_ik_x = True
            farm_p.lock_ik_z = True
        else:
            farm_p.lock_ik_x = True
            farm_p.lock_ik_y = True

        # Pole target only translates
        pole_p.lock_location = False, False, False
        pole_p.lock_rotation = True, True, True
        pole_p.lock_rotation_w = True
        pole_p.lock_scale = True, True, True

        # Set up custom properties
        if self.switch == True:
            prop = rna_idprop_ui_prop_get(hand_p, "ikfk_switch", create=True)
            hand_p["ikfk_switch"] = 0.0
            prop["soft_min"] = prop["min"] = 0.0
            prop["soft_max"] = prop["max"] = 1.0

        # Bend direction hint
        if self.bend_hint:
            con = farm_p.constraints.new('LIMIT_ROTATION')
            con.name = "bend_hint"
            con.owner_space = 'LOCAL'
            if self.primary_rotation_axis == 'X':
                con.use_limit_x = True
                con.min_x = pi / 10
                con.max_x = pi / 10
            elif self.primary_rotation_axis == '-X':
                con.use_limit_x = True
                con.min_x = -pi / 10
                con.max_x = -pi / 10
            elif self.primary_rotation_axis == 'Y':
                con.use_limit_y = True
                con.min_y = pi / 10
                con.max_y = pi / 10
            elif self.primary_rotation_axis == '-Y':
                con.use_limit_y = True
                con.min_y = -pi / 10
                con.max_y = -pi / 10
            elif self.primary_rotation_axis == 'Z':
                con.use_limit_z = True
                con.min_z = pi / 10
                con.max_z = pi / 10
            elif self.primary_rotation_axis == '-Z':
                con.use_limit_z = True
                con.min_z = -pi / 10
                con.max_z = -pi / 10

        # IK Constraint
        con = farm_p.constraints.new('IK')
        con.name = "ik"
        con.target = self.obj
        con.subtarget = hand
        con.pole_target = self.obj
        con.pole_subtarget = pole
        con.pole_angle = pole_offset
        con.chain_count = 2

        # Constrain org bones to controls
        con = pb[self.org_bones[0]].constraints.new('COPY_TRANSFORMS')
        con.name = "ik"
        con.target = self.obj
        con.subtarget = uarm
        if self.switch == True:
            # IK/FK switch driver
            fcurve = con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'AVERAGE'
            var.name = "var"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = hand_p.path_from_id() + '["ikfk_switch"]'

        con = pb[self.org_bones[1]].constraints.new('COPY_TRANSFORMS')
        con.name = "ik"
        con.target = self.obj
        con.subtarget = farm
        if self.switch == True:
            # IK/FK switch driver
            fcurve = con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'AVERAGE'
            var.name = "var"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = hand_p.path_from_id() + '["ikfk_switch"]'

        con = pb[self.org_bones[2]].constraints.new('COPY_TRANSFORMS')
        con.name = "ik"
        con.target = self.obj
        con.subtarget = hand
        if self.switch == True:
            # IK/FK switch driver
            fcurve = con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'AVERAGE'
            var.name = "var"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = hand_p.path_from_id() + '["ikfk_switch"]'

        # VIS hand constraints
        con = vishand_p.constraints.new('COPY_LOCATION')
        con.name = "copy_loc"
        con.target = self.obj
        con.subtarget = self.org_bones[2]

        con = vishand_p.constraints.new('STRETCH_TO')
        con.name = "stretch_to"
        con.target = self.obj
        con.subtarget = hand
        con.volume = 'NO_VOLUME'
        con.rest_length = vishand_p.length

        # VIS pole constraints
        con = vispole_p.constraints.new('COPY_LOCATION')
        con.name = "copy_loc"
        con.target = self.obj
        con.subtarget = self.org_bones[1]

        con = vispole_p.constraints.new('STRETCH_TO')
        con.name = "stretch_to"
        con.target = self.obj
        con.subtarget = pole
        con.volume = 'NO_VOLUME'
        con.rest_length = vispole_p.length

        # Set layers if specified
        if self.layers:
            hand_p.bone.layers = self.layers
            pole_p.bone.layers = self.layers
            vishand_p.bone.layers = self.layers
            vispole_p.bone.layers = self.layers

        # Create widgets
        create_line_widget(self.obj, vispole)
        create_line_widget(self.obj, vishand)
        create_sphere_widget(self.obj, pole)

        ob = create_widget(self.obj, hand)
        if ob != None:
            verts = [(0.7, 1.5, 0.0), (0.7, -0.25, 0.0), (-0.7, -0.25, 0.0), (-0.7, 1.5, 0.0), (0.7, 0.723, 0.0), (-0.7, 0.723, 0.0), (0.7, 0.0, 0.0), (-0.7, 0.0, 0.0)]
            edges = [(1, 2), (0, 3), (0, 4), (3, 5), (4, 6), (1, 6), (5, 7), (2, 7)]
            mesh = ob.data
            mesh.from_pydata(verts, edges, [])
            mesh.update()

            mod = ob.modifiers.new("subsurf", 'SUBSURF')
            mod.levels = 2

        return [uarm, farm, hand, pole]
Exemple #19
0
    def generate(self):
        """ Generate the rig.
            Do NOT modify any of the original bones, except for adding constraints.
            The main armature should be selected and active before this is called.

        """
        bpy.ops.object.mode_set(mode='EDIT')

        make_rocker = False
        if self.org_bones[5] is not None:
            make_rocker = True

        # Create the bones
        thigh = copy_bone(
            self.obj, self.org_bones[0],
            make_mechanism_name(
                strip_org(insert_before_lr(self.org_bones[0], "_ik"))))
        shin = copy_bone(
            self.obj, self.org_bones[1],
            make_mechanism_name(
                strip_org(insert_before_lr(self.org_bones[1], "_ik"))))

        foot = copy_bone(self.obj, self.org_bones[2],
                         strip_org(insert_before_lr(self.org_bones[2], "_ik")))
        foot_ik_target = copy_bone(
            self.obj, self.org_bones[2],
            make_mechanism_name(
                strip_org(insert_before_lr(self.org_bones[2], "_ik_target"))))
        pole = copy_bone(
            self.obj, self.org_bones[0],
            strip_org(insert_before_lr(self.org_bones[0], "_pole")))

        toe = copy_bone(self.obj, self.org_bones[3],
                        strip_org(self.org_bones[3]))
        toe_parent = copy_bone(
            self.obj, self.org_bones[2],
            make_mechanism_name(strip_org(self.org_bones[3] + ".parent")))
        toe_parent_socket1 = copy_bone(
            self.obj, self.org_bones[2],
            make_mechanism_name(strip_org(self.org_bones[3] + ".socket1")))
        toe_parent_socket2 = copy_bone(
            self.obj, self.org_bones[2],
            make_mechanism_name(strip_org(self.org_bones[3] + ".socket2")))

        foot_roll = copy_bone(
            self.obj, self.org_bones[4],
            strip_org(insert_before_lr(self.org_bones[2], "_roll")))
        roll1 = copy_bone(
            self.obj, self.org_bones[4],
            make_mechanism_name(strip_org(self.org_bones[2] + ".roll.01")))
        roll2 = copy_bone(
            self.obj, self.org_bones[4],
            make_mechanism_name(strip_org(self.org_bones[2] + ".roll.02")))

        if make_rocker:
            rocker1 = copy_bone(
                self.obj, self.org_bones[5],
                make_mechanism_name(strip_org(self.org_bones[2] +
                                              ".rocker.01")))
            rocker2 = copy_bone(
                self.obj, self.org_bones[5],
                make_mechanism_name(strip_org(self.org_bones[2] +
                                              ".rocker.02")))

        visfoot = copy_bone(
            self.obj, self.org_bones[2],
            "VIS-" + strip_org(insert_before_lr(self.org_bones[2], "_ik")))
        vispole = copy_bone(
            self.obj, self.org_bones[1],
            "VIS-" + strip_org(insert_before_lr(self.org_bones[0], "_pole")))

        # Get edit bones
        eb = self.obj.data.edit_bones

        org_foot_e = eb[self.org_bones[2]]
        thigh_e = eb[thigh]
        shin_e = eb[shin]
        foot_e = eb[foot]
        foot_ik_target_e = eb[foot_ik_target]
        pole_e = eb[pole]
        toe_e = eb[toe]
        toe_parent_e = eb[toe_parent]
        toe_parent_socket1_e = eb[toe_parent_socket1]
        toe_parent_socket2_e = eb[toe_parent_socket2]
        foot_roll_e = eb[foot_roll]
        roll1_e = eb[roll1]
        roll2_e = eb[roll2]
        if make_rocker:
            rocker1_e = eb[rocker1]
            rocker2_e = eb[rocker2]
        visfoot_e = eb[visfoot]
        vispole_e = eb[vispole]

        # Parenting
        shin_e.parent = thigh_e

        foot_e.use_connect = False
        foot_e.parent = None
        foot_ik_target_e.use_connect = False
        foot_ik_target_e.parent = roll2_e

        pole_e.use_connect = False
        pole_e.parent = foot_e

        toe_e.parent = toe_parent_e
        toe_parent_e.use_connect = False
        toe_parent_e.parent = toe_parent_socket1_e
        toe_parent_socket1_e.use_connect = False
        toe_parent_socket1_e.parent = roll1_e
        toe_parent_socket2_e.use_connect = False
        toe_parent_socket2_e.parent = eb[self.org_bones[2]]

        foot_roll_e.use_connect = False
        foot_roll_e.parent = foot_e

        roll1_e.use_connect = False
        roll1_e.parent = foot_e

        roll2_e.use_connect = False
        roll2_e.parent = roll1_e

        visfoot_e.use_connect = False
        visfoot_e.parent = None

        vispole_e.use_connect = False
        vispole_e.parent = None

        if make_rocker:
            rocker1_e.use_connect = False
            rocker2_e.use_connect = False

            roll1_e.parent = rocker2_e
            rocker2_e.parent = rocker1_e
            rocker1_e.parent = foot_e

        # Misc
        foot_e.use_local_location = False

        visfoot_e.hide_select = True
        vispole_e.hide_select = True

        # Positioning
        vec = Vector(toe_e.vector)
        vec.normalize()
        foot_e.tail = foot_e.head + (vec * foot_e.length)
        foot_e.roll = toe_e.roll

        v1 = shin_e.tail - thigh_e.head

        if 'X' in self.primary_rotation_axis or 'Y' in self.primary_rotation_axis:
            v2 = v1.cross(shin_e.x_axis)
            if (v2 * shin_e.z_axis) > 0.0:
                v2 *= -1.0
        else:
            v2 = v1.cross(shin_e.z_axis)
            if (v2 * shin_e.x_axis) < 0.0:
                v2 *= -1.0
        v2.normalize()
        v2 *= v1.length

        if '-' in self.primary_rotation_axis:
            v2 *= -1

        pole_e.head = shin_e.head + v2
        pole_e.tail = pole_e.head + (Vector((0, 1, 0)) * (v1.length / 8))
        pole_e.roll = 0.0

        flip_bone(self.obj, toe_parent_socket1)
        flip_bone(self.obj, toe_parent_socket2)
        toe_parent_socket1_e.head = Vector(org_foot_e.tail)
        toe_parent_socket2_e.head = Vector(org_foot_e.tail)
        toe_parent_socket1_e.tail = Vector(org_foot_e.tail) + (Vector(
            (0, 0, 1)) * foot_e.length / 2)
        toe_parent_socket2_e.tail = Vector(org_foot_e.tail) + (Vector(
            (0, 0, 1)) * foot_e.length / 3)
        toe_parent_socket2_e.roll = toe_parent_socket1_e.roll

        tail = Vector(roll1_e.tail)
        roll1_e.tail = Vector(org_foot_e.tail)
        roll1_e.tail = Vector(org_foot_e.tail)
        roll1_e.head = tail
        roll2_e.head = Vector(org_foot_e.tail)
        foot_roll_e.head = Vector(org_foot_e.tail)
        put_bone(self.obj, foot_roll, roll1_e.head)
        foot_roll_e.length /= 2

        roll_axis = roll1_e.vector.cross(org_foot_e.vector)
        align_x_axis(self.obj, roll1, roll_axis)
        align_x_axis(self.obj, roll2, roll_axis)
        foot_roll_e.roll = roll2_e.roll

        visfoot_e.tail = visfoot_e.head + Vector((0, 0, v1.length / 32))
        vispole_e.tail = vispole_e.head + Vector((0, 0, v1.length / 32))

        if make_rocker:
            d = toe_e.y_axis.dot(rocker1_e.x_axis)
            if d >= 0.0:
                flip_bone(self.obj, rocker2)
            else:
                flip_bone(self.obj, rocker1)

        # Weird alignment issues.  Fix.
        toe_parent_e.head = Vector(org_foot_e.head)
        toe_parent_e.tail = Vector(org_foot_e.tail)
        toe_parent_e.roll = org_foot_e.roll

        foot_e.head = Vector(org_foot_e.head)

        foot_ik_target_e.head = Vector(org_foot_e.head)
        foot_ik_target_e.tail = Vector(org_foot_e.tail)

        # Determine the pole offset value
        plane = (shin_e.tail - thigh_e.head).normalized()
        vec1 = thigh_e.x_axis.normalized()
        vec2 = (pole_e.head - thigh_e.head).normalized()
        pole_offset = angle_on_plane(plane, vec1, vec2)

        # Object mode, get pose bones
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        # thigh_p = pb[thigh]  # UNUSED
        shin_p = pb[shin]
        foot_p = pb[foot]
        pole_p = pb[pole]
        foot_roll_p = pb[foot_roll]
        roll1_p = pb[roll1]
        roll2_p = pb[roll2]
        if make_rocker:
            rocker1_p = pb[rocker1]
            rocker2_p = pb[rocker2]
        toe_p = pb[toe]
        toe_parent_p = pb[toe_parent]
        toe_parent_socket1_p = pb[toe_parent_socket1]
        visfoot_p = pb[visfoot]
        vispole_p = pb[vispole]

        # Set the knee to only bend on the primary axis.
        if 'X' in self.primary_rotation_axis:
            shin_p.lock_ik_y = True
            shin_p.lock_ik_z = True
        elif 'Y' in self.primary_rotation_axis:
            shin_p.lock_ik_x = True
            shin_p.lock_ik_z = True
        else:
            shin_p.lock_ik_x = True
            shin_p.lock_ik_y = True

        # Foot roll control only rotates on x-axis, or x and y if rocker.
        foot_roll_p.rotation_mode = 'XYZ'
        if make_rocker:
            foot_roll_p.lock_rotation = False, False, True
        else:
            foot_roll_p.lock_rotation = False, True, True
        foot_roll_p.lock_location = True, True, True
        foot_roll_p.lock_scale = True, True, True

        # roll and rocker bones set to euler rotation
        roll1_p.rotation_mode = 'XYZ'
        roll2_p.rotation_mode = 'XYZ'
        if make_rocker:
            rocker1_p.rotation_mode = 'XYZ'
            rocker2_p.rotation_mode = 'XYZ'

        # Pole target only translates
        pole_p.lock_location = False, False, False
        pole_p.lock_rotation = True, True, True
        pole_p.lock_rotation_w = True
        pole_p.lock_scale = True, True, True

        # Set up custom properties
        if self.switch == True:
            prop = rna_idprop_ui_prop_get(foot_p, "ikfk_switch", create=True)
            foot_p["ikfk_switch"] = 0.0
            prop["soft_min"] = prop["min"] = 0.0
            prop["soft_max"] = prop["max"] = 1.0

        # Bend direction hint
        if self.bend_hint:
            con = shin_p.constraints.new('LIMIT_ROTATION')
            con.name = "bend_hint"
            con.owner_space = 'LOCAL'
            if self.primary_rotation_axis == 'X':
                con.use_limit_x = True
                con.min_x = pi / 10
                con.max_x = pi / 10
            elif self.primary_rotation_axis == '-X':
                con.use_limit_x = True
                con.min_x = -pi / 10
                con.max_x = -pi / 10
            elif self.primary_rotation_axis == 'Y':
                con.use_limit_y = True
                con.min_y = pi / 10
                con.max_y = pi / 10
            elif self.primary_rotation_axis == '-Y':
                con.use_limit_y = True
                con.min_y = -pi / 10
                con.max_y = -pi / 10
            elif self.primary_rotation_axis == 'Z':
                con.use_limit_z = True
                con.min_z = pi / 10
                con.max_z = pi / 10
            elif self.primary_rotation_axis == '-Z':
                con.use_limit_z = True
                con.min_z = -pi / 10
                con.max_z = -pi / 10

        # IK Constraint
        con = shin_p.constraints.new('IK')
        con.name = "ik"
        con.target = self.obj
        con.subtarget = foot_ik_target
        con.pole_target = self.obj
        con.pole_subtarget = pole
        con.pole_angle = pole_offset
        con.chain_count = 2

        # toe_parent constraint
        con = toe_parent_socket1_p.constraints.new('COPY_LOCATION')
        con.name = "copy_location"
        con.target = self.obj
        con.subtarget = toe_parent_socket2

        con = toe_parent_socket1_p.constraints.new('COPY_SCALE')
        con.name = "copy_scale"
        con.target = self.obj
        con.subtarget = toe_parent_socket2

        con = toe_parent_socket1_p.constraints.new(
            'COPY_TRANSFORMS')  # drive with IK switch
        con.name = "fk"
        con.target = self.obj
        con.subtarget = toe_parent_socket2

        fcurve = con.driver_add("influence")
        driver = fcurve.driver
        var = driver.variables.new()
        driver.type = 'AVERAGE'
        var.name = "var"
        var.targets[0].id_type = 'OBJECT'
        var.targets[0].id = self.obj
        var.targets[0].data_path = foot_p.path_from_id() + '["ikfk_switch"]'
        mod = fcurve.modifiers[0]
        mod.poly_order = 1
        mod.coefficients[0] = 1.0
        mod.coefficients[1] = -1.0

        # Foot roll drivers
        fcurve = roll1_p.driver_add("rotation_euler", 0)
        driver = fcurve.driver
        var = driver.variables.new()
        driver.type = 'SCRIPTED'
        driver.expression = "min(0,var)"
        var.name = "var"
        var.targets[0].id_type = 'OBJECT'
        var.targets[0].id = self.obj
        var.targets[0].data_path = foot_roll_p.path_from_id(
        ) + '.rotation_euler[0]'

        fcurve = roll2_p.driver_add("rotation_euler", 0)
        driver = fcurve.driver
        var = driver.variables.new()
        driver.type = 'SCRIPTED'
        driver.expression = "max(0,var)"
        var.name = "var"
        var.targets[0].id_type = 'OBJECT'
        var.targets[0].id = self.obj
        var.targets[0].data_path = foot_roll_p.path_from_id(
        ) + '.rotation_euler[0]'

        if make_rocker:
            fcurve = rocker1_p.driver_add("rotation_euler", 0)
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'SCRIPTED'
            driver.expression = "max(0,-var)"
            var.name = "var"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = foot_roll_p.path_from_id(
            ) + '.rotation_euler[1]'

            fcurve = rocker2_p.driver_add("rotation_euler", 0)
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'SCRIPTED'
            driver.expression = "max(0,var)"
            var.name = "var"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = foot_roll_p.path_from_id(
            ) + '.rotation_euler[1]'

        # Constrain org bones to controls
        con = pb[self.org_bones[0]].constraints.new('COPY_TRANSFORMS')
        con.name = "ik"
        con.target = self.obj
        con.subtarget = thigh
        if self.switch == True:
            # IK/FK switch driver
            fcurve = con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'AVERAGE'
            var.name = "var"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = foot_p.path_from_id(
            ) + '["ikfk_switch"]'

        con = pb[self.org_bones[1]].constraints.new('COPY_TRANSFORMS')
        con.name = "ik"
        con.target = self.obj
        con.subtarget = shin
        if self.switch == True:
            # IK/FK switch driver
            fcurve = con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'AVERAGE'
            var.name = "var"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = foot_p.path_from_id(
            ) + '["ikfk_switch"]'

        con = pb[self.org_bones[2]].constraints.new('COPY_TRANSFORMS')
        con.name = "ik"
        con.target = self.obj
        con.subtarget = foot_ik_target
        if self.switch == True:
            # IK/FK switch driver
            fcurve = con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'AVERAGE'
            var.name = "var"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = foot_p.path_from_id(
            ) + '["ikfk_switch"]'

        con = pb[self.org_bones[3]].constraints.new('COPY_TRANSFORMS')
        con.name = "copy_transforms"
        con.target = self.obj
        con.subtarget = toe

        # VIS foot constraints
        con = visfoot_p.constraints.new('COPY_LOCATION')
        con.name = "copy_loc"
        con.target = self.obj
        con.subtarget = self.org_bones[2]

        con = visfoot_p.constraints.new('STRETCH_TO')
        con.name = "stretch_to"
        con.target = self.obj
        con.subtarget = foot
        con.volume = 'NO_VOLUME'
        con.rest_length = visfoot_p.length

        # VIS pole constraints
        con = vispole_p.constraints.new('COPY_LOCATION')
        con.name = "copy_loc"
        con.target = self.obj
        con.subtarget = self.org_bones[1]

        con = vispole_p.constraints.new('STRETCH_TO')
        con.name = "stretch_to"
        con.target = self.obj
        con.subtarget = pole
        con.volume = 'NO_VOLUME'
        con.rest_length = vispole_p.length

        # Set layers if specified
        if self.layers:
            foot_p.bone.layers = self.layers
            pole_p.bone.layers = self.layers
            foot_roll_p.bone.layers = self.layers
            visfoot_p.bone.layers = self.layers
            vispole_p.bone.layers = self.layers

            toe_p.bone.layers = [
                (i[0] or i[1]) for i in zip(toe_p.bone.layers, self.layers)
            ]  # Both FK and IK layers

        # Create widgets
        create_line_widget(self.obj, vispole)
        create_line_widget(self.obj, visfoot)
        create_sphere_widget(self.obj, pole)
        create_circle_widget(self.obj, toe, radius=0.7, head_tail=0.5)

        ob = create_widget(self.obj, foot)
        if ob != None:
            verts = [(0.7, 1.5, 0.0), (0.7, -0.25, 0.0), (-0.7, -0.25, 0.0),
                     (-0.7, 1.5, 0.0), (0.7, 0.723, 0.0), (-0.7, 0.723, 0.0),
                     (0.7, 0.0, 0.0), (-0.7, 0.0, 0.0)]
            edges = [(1, 2), (0, 3), (0, 4), (3, 5), (4, 6), (1, 6), (5, 7),
                     (2, 7)]
            mesh = ob.data
            mesh.from_pydata(verts, edges, [])
            mesh.update()

            mod = ob.modifiers.new("subsurf", 'SUBSURF')
            mod.levels = 2

        ob = create_widget(self.obj, foot_roll)
        if ob != None:
            verts = [
                (0.3999999761581421, 0.766044557094574, 0.6427875757217407),
                (0.17668449878692627, 3.823702598992895e-08,
                 3.2084670920085046e-08),
                (-0.17668461799621582, 9.874240447516058e-08,
                 8.285470443070153e-08),
                (-0.39999961853027344, 0.7660449147224426, 0.6427879333496094),
                (0.3562471270561218, 0.6159579753875732, 0.5168500542640686),
                (-0.35624682903289795, 0.6159582138061523, 0.5168502926826477),
                (0.20492683351039886, 0.09688037633895874, 0.0812922865152359),
                (-0.20492687821388245, 0.0968804731965065, 0.08129236847162247)
            ]
            edges = [(1, 2), (0, 3), (0, 4), (3, 5), (1, 6), (4, 6), (2, 7),
                     (5, 7)]
            mesh = ob.data
            mesh.from_pydata(verts, edges, [])
            mesh.update()

            mod = ob.modifiers.new("subsurf", 'SUBSURF')
            mod.levels = 2

        return [thigh, shin, foot, pole, foot_roll, foot_ik_target]
    def generate(self):
        if self.params.use_parent_Z_index and self.org_parent is not None:
            # Get parent's Z indices
            bpy.ops.object.mode_set(mode='OBJECT')
            pb = self.obj.pose.bones
            def_parent_name = make_deformer_name(strip_org(self.org_parent))
            if (self.params.object_side != ".C"
                    and def_parent_name[-2:] not in ['.L', '.R']):
                def_parent_name += self.params.object_side
            # print("DEF PARENT", def_parent_name)
            if not def_parent_name in pb:
                raise MetarigError(
                    "RIGIFY ERROR: Bone %s does not have a %s side" %
                    (strip_org(self.org_parent), self.params.object_side))
            parent_p = pb[def_parent_name]
            member_Z_index = parent_p['member_index']
            bone_Z_index = 0
            for b in pb:
                if b.bone.use_deform and b.name.startswith('DEF-'):
                    if (b['member_index'] == member_Z_index
                            and b['bone_index'] > bone_Z_index):
                        bone_Z_index = b['bone_index']
            bone_Z_index += 1

            bpy.ops.object.mode_set(mode='EDIT')
        else:
            member_Z_index = self.params.member_Z_index
            bone_Z_index = self.params.first_bone_Z_index

        eb = self.obj.data.edit_bones

        ctrl_chain = []
        # mch_chain = []

        # Control bones
        # Left
        left_ctrl = copy_bone(self.obj, self.org_bone,
                              strip_org(self.params.eye_name) + '.L')
        left_ctrl_e = eb[left_ctrl]
        left_ctrl_e.use_connect = False
        left_ctrl_e.tail = (left_ctrl_e.tail + Vector(
            (0, 0, 1)) * left_ctrl_e.length)
        left_ctrl_e.head = eb[self.org_bone].tail
        align_bone_z_axis(self.obj, left_ctrl, Vector((0, 1, 0)))
        ctrl_chain.append(left_ctrl)

        # Right
        right_ctrl = copy_bone(self.obj, self.org_bone,
                               strip_org(self.params.eye_name) + '.R')
        right_ctrl_e = eb[right_ctrl]
        right_ctrl_e.use_connect = False
        right_ctrl_e.tail = (right_ctrl_e.head + Vector(
            (0, 0, 1)) * right_ctrl_e.length)
        align_bone_z_axis(self.obj, right_ctrl, Vector((0, 1, 0)))
        ctrl_chain.append(right_ctrl)

        # Main
        main_ctrl = copy_bone(self.obj, self.org_bone,
                              strip_org(self.org_bone))
        main_ctrl_e = eb[main_ctrl]
        main_ctrl_e.head = (main_ctrl_e.head + main_ctrl_e.tail) / 2
        if self.org_parent is not None:
            main_ctrl_e.parent = eb[self.org_parent]
        ctrl_chain.append(main_ctrl)

        # Mechanism bones
        inter = copy_bone(
            self.obj, self.org_bone,
            make_mechanism_name(strip_org(self.org_bone) + '.intermediate'))
        eb[inter].parent = eb[main_ctrl]
        eb[left_ctrl].parent = eb[inter]
        eb[right_ctrl].parent = eb[inter]

        # # Def bones
        for i, b in enumerate([left_ctrl, right_ctrl]):
            def_bone = pantin_utils.create_deformation(self.obj, b,
                                                       member_Z_index,
                                                       bone_Z_index + i, 0.0,
                                                       b)

        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        # Widgets
        pantin_utils.create_capsule_widget(self.obj,
                                           main_ctrl,
                                           length=pb[self.org_bone].length,
                                           width=pb[self.org_bone].length *
                                           0.7,
                                           horizontal=False)
        for b in [left_ctrl, right_ctrl]:
            pantin_utils.create_aligned_circle_widget(self.obj,
                                                      b,
                                                      radius=pb[b].length / 4)
        # for ctrl_bone in ctrl_chain:
        #     global_scale = pb[ctrl_bone].length  # self.obj.dimensions[2]
        #     # member_factor = 0.06
        #     widget_size = global_scale * 0.5  # * member_factor
        #     pantin_utils.create_aligned_circle_widget(
        #         self.obj, ctrl_bone, radius=widget_size)

        # Constraints
        # for org, ctrl in zip(self.org_bones, mch_chain):
        con = pb[self.org_bone].constraints.new('COPY_TRANSFORMS')
        con.name = "copy_transforms"
        con.target = self.obj
        con.subtarget = inter

        # # Pelvis follow
        # if self.params.do_flip:
        #     pantin_utils.create_ik_child_of(
        #         self.obj, ctrl_bone, self.params.pelvis_name)

        return {
            'imports': UI_IMPORTS,
            'utilities': PANTIN_UTILS,
            'register': PANTIN_REGISTER,
            'register_props': REGISTER_PANTIN_PROPS,
        }
Exemple #21
0
    def gen_control(self):
        """ Generate the control rig.

        """
        bpy.ops.object.mode_set(mode='EDIT')
        eb = self.obj.data.edit_bones
        #-------------------------
        # Get rest slide position
        a = self.pivot_rest * len(self.org_bones)
        i = floor(a)
        a -= i
        if i == len(self.org_bones):
            i -= 1
            a = 1.0

        pivot_rest_pos = eb[self.org_bones[i]].head.copy()
        pivot_rest_pos += eb[self.org_bones[i]].vector * a

        #----------------------
        # Create controls

        # Create control bones
        controls = []
        for i in self.control_indices:
            name = copy_bone(self.obj, self.org_bones[i], strip_org(self.org_bones[i]))
            controls += [name]

        # Create control parents
        control_parents = []
        for i in self.control_indices[1:-1]:
            name = new_bone(self.obj, make_mechanism_name("par_" + strip_org(self.org_bones[i])))
            control_parents += [name]

        # Create sub-control bones
        subcontrols = []
        for i in self.control_indices:
            name = new_bone(self.obj, make_mechanism_name("sub_" + strip_org(self.org_bones[i])))
            subcontrols += [name]

        # Create main control bone
        main_control = new_bone(self.obj, self.params.spine_main_control_name)

        # Create main control WGT bones
        main_wgt1 = new_bone(self.obj, make_mechanism_name(self.params.spine_main_control_name + ".01"))
        main_wgt2 = new_bone(self.obj, make_mechanism_name(self.params.spine_main_control_name + ".02"))

        eb = self.obj.data.edit_bones

        # Parent the main control
        eb[main_control].use_connect = False
        eb[main_control].parent = eb[self.org_bones[0]].parent

        # Parent the main WGTs
        eb[main_wgt1].use_connect = False
        eb[main_wgt1].parent = eb[main_control]
        eb[main_wgt2].use_connect = False
        eb[main_wgt2].parent = eb[main_wgt1]

        # Parent the controls and sub-controls
        for name, subname in zip(controls, subcontrols):
            eb[name].use_connect = False
            eb[name].parent = eb[main_control]
            eb[subname].use_connect = False
            eb[subname].parent = eb[name]

        # Parent the control parents
        for name, par_name in zip(controls[1:-1], control_parents):
            eb[par_name].use_connect = False
            eb[par_name].parent = eb[main_control]
            eb[name].parent = eb[par_name]

        # Position the main bone
        put_bone(self.obj, main_control, pivot_rest_pos)
        eb[main_control].length = sum([eb[b].length for b in self.org_bones]) / 2

        # Position the main WGTs
        eb[main_wgt1].tail = (0.0, 0.0, sum([eb[b].length for b in self.org_bones]) / 4)
        eb[main_wgt2].length = sum([eb[b].length for b in self.org_bones]) / 4
        put_bone(self.obj, main_wgt1, pivot_rest_pos)
        put_bone(self.obj, main_wgt2, pivot_rest_pos)

        # Position the controls and sub-controls
        pos = eb[controls[0]].head.copy()
        for name, subname in zip(controls, subcontrols):
            put_bone(self.obj, name, pivot_rest_pos)
            put_bone(self.obj, subname, pivot_rest_pos)
            eb[subname].length = eb[name].length / 3

        # Position the control parents
        for name, par_name in zip(controls[1:-1], control_parents):
            put_bone(self.obj, par_name, pivot_rest_pos)
            eb[par_name].length = eb[name].length / 2

        #-----------------------------------------
        # Control bone constraints and properties
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        # Lock control locations
        for name in controls:
            bone = pb[name]
            bone.lock_location = True, True, True

        # Main control doesn't use local location
        pb[main_control].bone.use_local_location = False

        # Intermediate controls follow hips and spine
        for name, par_name, i in zip(controls[1:-1], control_parents, self.control_indices[1:-1]):
            bone = pb[par_name]

            # Custom bend_alpha property
            prop = rna_idprop_ui_prop_get(pb[name], "bend_alpha", create=True)
            pb[name]["bend_alpha"] = i / (len(self.org_bones) - 1)  # set bend alpha
            prop["min"] = 0.0
            prop["max"] = 1.0
            prop["soft_min"] = 0.0
            prop["soft_max"] = 1.0

            # Custom auto_rotate
            prop = rna_idprop_ui_prop_get(pb[name], "auto_rotate", create=True)
            pb[name]["auto_rotate"] = 1.0
            prop["min"] = 0.0
            prop["max"] = 1.0
            prop["soft_min"] = 0.0
            prop["soft_max"] = 1.0

            # Constraints
            con1 = bone.constraints.new('COPY_TRANSFORMS')
            con1.name = "copy_transforms"
            con1.target = self.obj
            con1.subtarget = subcontrols[0]

            con2 = bone.constraints.new('COPY_TRANSFORMS')
            con2.name = "copy_transforms"
            con2.target = self.obj
            con2.subtarget = subcontrols[-1]

            # Drivers
            fcurve = con1.driver_add("influence")
            driver = fcurve.driver
            driver.type = 'AVERAGE'
            var = driver.variables.new()
            var.name = "auto"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = pb[name].path_from_id() + '["auto_rotate"]'

            fcurve = con2.driver_add("influence")
            driver = fcurve.driver
            driver.type = 'SCRIPTED'
            driver.expression = "alpha * auto"
            var = driver.variables.new()
            var.name = "alpha"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = pb[name].path_from_id() + '["bend_alpha"]'
            var = driver.variables.new()
            var.name = "auto"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = pb[name].path_from_id() + '["auto_rotate"]'

        #-------------------------
        # Create flex spine chain
        bpy.ops.object.mode_set(mode='EDIT')
        flex_bones = []
        flex_subs = []
        prev_bone = None
        for b in self.org_bones:
            # Create bones
            bone = copy_bone(self.obj, b, make_mechanism_name(strip_org(b) + ".flex"))
            sub = new_bone(self.obj, make_mechanism_name(strip_org(b) + ".flex_s"))
            flex_bones += [bone]
            flex_subs += [sub]

            eb = self.obj.data.edit_bones
            bone_e = eb[bone]
            sub_e = eb[sub]

            # Parenting
            bone_e.use_connect = False
            sub_e.use_connect = False
            if prev_bone is None:
                sub_e.parent = eb[controls[0]]
            else:
                sub_e.parent = eb[prev_bone]
            bone_e.parent = sub_e

            # Position
            put_bone(self.obj, sub, bone_e.head)
            sub_e.length = bone_e.length / 4
            if prev_bone is not None:
                sub_e.use_connect = True

            prev_bone = bone

        #----------------------------
        # Create reverse spine chain

        # Create bones/parenting/positioning
        bpy.ops.object.mode_set(mode='EDIT')
        rev_bones = []
        prev_bone = None
        for b in zip(flex_bones, self.org_bones):
            # Create bones
            bone = copy_bone(self.obj, b[1], make_mechanism_name(strip_org(b[1]) + ".reverse"))
            rev_bones += [bone]
            eb = self.obj.data.edit_bones
            bone_e = eb[bone]

            # Parenting
            bone_e.use_connect = False
            bone_e.parent = eb[b[0]]

            # Position
            flip_bone(self.obj, bone)
            bone_e.tail = Vector(eb[b[0]].head)
            #bone_e.head = Vector(eb[b[0]].tail)
            if prev_bone is None:
                put_bone(self.obj, bone, pivot_rest_pos)
            else:
                put_bone(self.obj, bone, eb[prev_bone].tail)

            prev_bone = bone

        # Constraints
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones
        prev_bone = None
        for bone in rev_bones:
            bone_p = pb[bone]

            con = bone_p.constraints.new('COPY_LOCATION')
            con.name = "copy_location"
            con.target = self.obj
            if prev_bone is None:
                con.subtarget = main_control
            else:
                con.subtarget = prev_bone
                con.head_tail = 1.0
            prev_bone = bone

        #----------------------------------------
        # Constrain original bones to flex spine
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        for obone, fbone in zip(self.org_bones, flex_bones):
            con = pb[obone].constraints.new('COPY_TRANSFORMS')
            con.name = "copy_transforms"
            con.target = self.obj
            con.subtarget = fbone

        #---------------------------
        # Create pivot slide system
        pb = self.obj.pose.bones
        bone_p = pb[self.org_bones[0]]
        main_control_p = pb[main_control]

        # Custom pivot_slide property
        prop = rna_idprop_ui_prop_get(main_control_p, "pivot_slide", create=True)
        main_control_p["pivot_slide"] = self.pivot_rest
        prop["min"] = 0.0
        prop["max"] = 1.0
        prop["soft_min"] = 1.0 / len(self.org_bones)
        prop["soft_max"] = 1.0 - (1.0 / len(self.org_bones))

        # Anchor constraints
        con = bone_p.constraints.new('COPY_LOCATION')
        con.name = "copy_location"
        con.target = self.obj
        con.subtarget = rev_bones[0]

        con = pb[main_wgt1].constraints.new('COPY_ROTATION')
        con.name = "copy_rotation"
        con.target = self.obj
        con.subtarget = rev_bones[0]

        # Slide constraints
        i = 1
        tot = len(rev_bones)
        for rb in rev_bones:
            con = bone_p.constraints.new('COPY_LOCATION')
            con.name = "slide." + str(i)
            con.target = self.obj
            con.subtarget = rb
            con.head_tail = 1.0

            # Driver
            fcurve = con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'AVERAGE'
            var.name = "slide"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = main_control_p.path_from_id() + '["pivot_slide"]'
            mod = fcurve.modifiers[0]
            mod.poly_order = 1
            mod.coefficients[0] = 1 - i
            mod.coefficients[1] = tot

            # Main WGT
            con = pb[main_wgt1].constraints.new('COPY_ROTATION')
            con.name = "slide." + str(i)
            con.target = self.obj
            con.subtarget = rb

            # Driver
            fcurve = con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'AVERAGE'
            var.name = "slide"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = main_control_p.path_from_id() + '["pivot_slide"]'
            mod = fcurve.modifiers[0]
            mod.poly_order = 1
            mod.coefficients[0] = 1.5 - i
            mod.coefficients[1] = tot

            i += 1

        #----------------------------------
        # Constrain flex spine to controls
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        # Constrain the bones that correspond exactly to the controls
        for i, name in zip(self.control_indices, subcontrols):
            con = pb[flex_subs[i]].constraints.new('COPY_TRANSFORMS')
            con.name = "copy_transforms"
            con.target = self.obj
            con.subtarget = name

        # Constrain the bones in-between the controls
        for i, j, name1, name2 in zip(self.control_indices, self.control_indices[1:], subcontrols, subcontrols[1:]):
            if (i + 1) < j:
                for n in range(i + 1, j):
                    bone = pb[flex_subs[n]]
                    # Custom bend_alpha property
                    prop = rna_idprop_ui_prop_get(bone, "bend_alpha", create=True)
                    bone["bend_alpha"] = (n - i) / (j - i)  # set bend alpha
                    prop["min"] = 0.0
                    prop["max"] = 1.0
                    prop["soft_min"] = 0.0
                    prop["soft_max"] = 1.0

                    con = bone.constraints.new('COPY_TRANSFORMS')
                    con.name = "copy_transforms"
                    con.target = self.obj
                    con.subtarget = name1

                    con = bone.constraints.new('COPY_TRANSFORMS')
                    con.name = "copy_transforms"
                    con.target = self.obj
                    con.subtarget = name2

                    # Driver
                    fcurve = con.driver_add("influence")
                    driver = fcurve.driver
                    var = driver.variables.new()
                    driver.type = 'AVERAGE'
                    var.name = "alpha"
                    var.targets[0].id_type = 'OBJECT'
                    var.targets[0].id = self.obj
                    var.targets[0].data_path = bone.path_from_id() + '["bend_alpha"]'

        #-------------
        # Final stuff
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        # Control appearance
        # Main
        pb[main_control].custom_shape_transform = pb[main_wgt2]
        w = create_compass_widget(self.obj, main_control)
        if w != None:
            obj_to_bone(w, self.obj, main_wgt2)

        # Spines
        for name, i in zip(controls[1:-1], self.control_indices[1:-1]):
            pb[name].custom_shape_transform = pb[self.org_bones[i]]
            # Create control widgets
            w = create_circle_widget(self.obj, name, radius=1.0, head_tail=0.5, with_line=True)
            if w != None:
                obj_to_bone(w, self.obj, self.org_bones[i])
        # Hips
        pb[controls[0]].custom_shape_transform = pb[self.org_bones[0]]
        # Create control widgets
        w = create_circle_widget(self.obj, controls[0], radius=1.0, head_tail=0.5, with_line=True)
        if w != None:
            obj_to_bone(w, self.obj, self.org_bones[0])

        # Ribs
        pb[controls[-1]].custom_shape_transform = pb[self.org_bones[-1]]
        # Create control widgets
        w = create_circle_widget(self.obj, controls[-1], radius=1.0, head_tail=0.5, with_line=True)
        if w != None:
            obj_to_bone(w, self.obj, self.org_bones[-1])

        # Layers
        pb[main_control].bone.layers = pb[self.org_bones[0]].bone.layers

        return [main_control] + controls
Exemple #22
0
    def control(self):
        """ Generate the control rig.
        """
        bpy.ops.object.mode_set(mode="EDIT")

        # Figure out the name for the control bone (remove the last .##)
        ctrl_name = re.sub("([0-9]+\.)", "", strip_org(self.org_bones[0])[::-1], count=1)[::-1]

        # Create the bones
        ctrl = copy_bone(self.obj, self.org_bones[0], ctrl_name)

        helpers = []
        bones = []
        for bone in self.org_bones:
            bones += [copy_bone(self.obj, bone, strip_org(bone))]
            helpers += [copy_bone(self.obj, bone, make_mechanism_name(strip_org(bone)))]

        # Position bones
        eb = self.obj.data.edit_bones

        length = 0.0
        for bone in helpers:
            length += eb[bone].length
            eb[bone].length /= 2

        eb[ctrl].length = length * 1.5

        # Parent bones
        prev = eb[self.org_bones[0]].parent
        for (b, h) in zip(bones, helpers):
            b_e = eb[b]
            h_e = eb[h]
            b_e.use_connect = False
            h_e.use_connect = False

            b_e.parent = h_e
            h_e.parent = prev

            prev = b_e

        # Transform locks and rotation mode
        bpy.ops.object.mode_set(mode="OBJECT")
        pb = self.obj.pose.bones

        for bone in bones[1:]:
            pb[bone].lock_location = True, True, True

        if pb[self.org_bones[0]].bone.use_connect == True:
            pb[bones[0]].lock_location = True, True, True

        pb[ctrl].lock_scale = True, False, True

        for bone in helpers:
            pb[bone].rotation_mode = "XYZ"

        # Drivers
        i = 1
        val = 1.2 / (len(self.org_bones) - 1)
        for bone in helpers:
            # Add custom prop
            prop_name = "bend_%02d" % i
            prop = rna_idprop_ui_prop_get(pb[ctrl], prop_name, create=True)
            prop["min"] = 0.0
            prop["max"] = 1.0
            prop["soft_min"] = 0.0
            prop["soft_max"] = 1.0
            if i == 1:
                pb[ctrl][prop_name] = 0.0
            else:
                pb[ctrl][prop_name] = val

            # Add driver
            if "X" in self.primary_rotation_axis:
                fcurve = pb[bone].driver_add("rotation_euler", 0)
            elif "Y" in self.primary_rotation_axis:
                fcurve = pb[bone].driver_add("rotation_euler", 1)
            else:
                fcurve = pb[bone].driver_add("rotation_euler", 2)

            driver = fcurve.driver
            driver.type = "SCRIPTED"

            var = driver.variables.new()
            var.name = "ctrl_y"
            var.targets[0].id_type = "OBJECT"
            var.targets[0].id = self.obj
            var.targets[0].data_path = pb[ctrl].path_from_id() + ".scale[1]"

            var = driver.variables.new()
            var.name = "bend"
            var.targets[0].id_type = "OBJECT"
            var.targets[0].id = self.obj
            var.targets[0].data_path = pb[ctrl].path_from_id() + '["' + prop_name + '"]'

            if "-" in self.primary_rotation_axis:
                driver.expression = "-(1.0-ctrl_y) * bend * 3.14159 * 2"
            else:
                driver.expression = "(1.0-ctrl_y) * bend * 3.14159 * 2"

            i += 1

        # Constraints
        con = pb[helpers[0]].constraints.new("COPY_LOCATION")
        con.name = "copy_location"
        con.target = self.obj
        con.subtarget = ctrl

        con = pb[helpers[0]].constraints.new("COPY_ROTATION")
        con.name = "copy_rotation"
        con.target = self.obj
        con.subtarget = ctrl

        # Constrain org bones to the control bones
        for (bone, org) in zip(bones, self.org_bones):
            con = pb[org].constraints.new("COPY_TRANSFORMS")
            con.name = "copy_transforms"
            con.target = self.obj
            con.subtarget = bone

        # Set layers for extra control bones
        if self.ex_layers:
            for bone in bones:
                pb[bone].bone.layers = self.ex_layers

        # Create control widgets
        w = create_widget(self.obj, ctrl)
        if w != None:
            mesh = w.data
            verts = [(0, 0, 0), (0, 1, 0), (0.05, 1, 0), (0.05, 1.1, 0), (-0.05, 1.1, 0), (-0.05, 1, 0)]
            if "Z" in self.primary_rotation_axis:
                # Flip x/z coordinates
                temp = []
                for v in verts:
                    temp += [(v[2], v[1], v[0])]
                verts = temp
            edges = [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 1)]
            mesh.from_pydata(verts, edges, [])
            mesh.update()

        for bone in bones:
            create_limb_widget(self.obj, bone)
Exemple #23
0
    def deform(self):
        """ Generate the deformation rig.
            Just a copy of the original bones, except the first digit which is a twist bone.
        """
        bpy.ops.object.mode_set(mode='EDIT')

        # Create the bones
        # First bone is a twist bone
        if self.use_digit_twist:
            b1a = copy_bone(
                self.obj, self.org_bones[0],
                make_deformer_name(strip_org(self.org_bones[0] + ".01")))
            b1b = copy_bone(
                self.obj, self.org_bones[0],
                make_deformer_name(strip_org(self.org_bones[0] + ".02")))
            b1tip = copy_bone(
                self.obj, self.org_bones[0],
                make_mechanism_name(strip_org(self.org_bones[0] + ".tip")))
        else:
            b1 = copy_bone(self.obj, self.org_bones[0],
                           make_deformer_name(strip_org(self.org_bones[0])))

        # The rest are normal
        bones = []
        for bone in self.org_bones[1:]:
            bones += [
                copy_bone(self.obj, bone, make_deformer_name(strip_org(bone)))
            ]

        # Position bones
        eb = self.obj.data.edit_bones
        if self.use_digit_twist:
            b1a_e = eb[b1a]
            b1b_e = eb[b1b]
            b1tip_e = eb[b1tip]

            b1tip_e.use_connect = False
            b1tip_e.tail += Vector((0.1, 0, 0))
            b1tip_e.head = b1b_e.tail
            b1tip_e.length = b1a_e.length / 4

            center = (b1a_e.head + b1a_e.tail) / 2
            b1a_e.tail = center
            b1b_e.use_connect = False
            b1b_e.head = center

        # Parenting
        if self.use_digit_twist:
            b1b_e.parent = eb[self.org_bones[0]]
            b1tip_e.parent = eb[self.org_bones[0]]
        else:
            eb[b1].use_connect = False
            eb[b1].parent = eb[self.org_bones[0]]

        for (ba, bb) in zip(bones, self.org_bones[1:]):
            eb[ba].use_connect = False
            eb[ba].parent = eb[bb]

        # Constraints
        if self.use_digit_twist:
            bpy.ops.object.mode_set(mode='OBJECT')
            pb = self.obj.pose.bones

            b1a_p = pb[b1a]

            con = b1a_p.constraints.new('COPY_LOCATION')
            con.name = "copy_location"
            con.target = self.obj
            con.subtarget = self.org_bones[0]

            con = b1a_p.constraints.new('COPY_SCALE')
            con.name = "copy_scale"
            con.target = self.obj
            con.subtarget = self.org_bones[0]

            con = b1a_p.constraints.new('DAMPED_TRACK')
            con.name = "track_to"
            con.target = self.obj
            con.subtarget = b1tip
Exemple #24
0
    def deform(self):
        """ Generate the deformation rig.
            Just a copy of the original bones, except the first digit which is a twist bone.
        """
        bpy.ops.object.mode_set(mode="EDIT")

        # Create the bones
        # First bone is a twist bone
        if self.use_digit_twist:
            b1a = copy_bone(self.obj, self.org_bones[0], make_deformer_name(strip_org(self.org_bones[0] + ".01")))
            b1b = copy_bone(self.obj, self.org_bones[0], make_deformer_name(strip_org(self.org_bones[0] + ".02")))
            b1tip = copy_bone(self.obj, self.org_bones[0], make_mechanism_name(strip_org(self.org_bones[0] + ".tip")))
        else:
            b1 = copy_bone(self.obj, self.org_bones[0], make_deformer_name(strip_org(self.org_bones[0])))

        # The rest are normal
        bones = []
        for bone in self.org_bones[1:]:
            bones += [copy_bone(self.obj, bone, make_deformer_name(strip_org(bone)))]

        # Position bones
        eb = self.obj.data.edit_bones
        if self.use_digit_twist:
            b1a_e = eb[b1a]
            b1b_e = eb[b1b]
            b1tip_e = eb[b1tip]

            b1tip_e.use_connect = False
            b1tip_e.tail += Vector((0.1, 0, 0))
            b1tip_e.head = b1b_e.tail
            b1tip_e.length = b1a_e.length / 4

            center = (b1a_e.head + b1a_e.tail) / 2
            b1a_e.tail = center
            b1b_e.use_connect = False
            b1b_e.head = center

        # Parenting
        if self.use_digit_twist:
            b1b_e.parent = eb[self.org_bones[0]]
            b1tip_e.parent = eb[self.org_bones[0]]
        else:
            eb[b1].use_connect = False
            eb[b1].parent = eb[self.org_bones[0]]

        for (ba, bb) in zip(bones, self.org_bones[1:]):
            eb[ba].use_connect = False
            eb[ba].parent = eb[bb]

        # Constraints
        if self.use_digit_twist:
            bpy.ops.object.mode_set(mode="OBJECT")
            pb = self.obj.pose.bones

            b1a_p = pb[b1a]

            con = b1a_p.constraints.new("COPY_LOCATION")
            con.name = "copy_location"
            con.target = self.obj
            con.subtarget = self.org_bones[0]

            con = b1a_p.constraints.new("COPY_SCALE")
            con.name = "copy_scale"
            con.target = self.obj
            con.subtarget = self.org_bones[0]

            con = b1a_p.constraints.new("DAMPED_TRACK")
            con.name = "track_to"
            con.target = self.obj
            con.subtarget = b1tip
Exemple #25
0
    def gen_control(self):
        """ Generate the control rig.

        """
        #---------------------------------
        # Create the neck and head controls
        bpy.ops.object.mode_set(mode='EDIT')

        # Create bones
        neck_ctrl = copy_bone(self.obj, self.org_bones[0], strip_org(self.org_bones[0]))
        neck_follow = copy_bone(self.obj, self.org_bones[-1], make_mechanism_name(strip_org(self.org_bones[0] + ".follow")))
        neck_child = new_bone(self.obj, make_mechanism_name(strip_org(self.org_bones[0] + ".child")))

        head_ctrl = copy_bone(self.obj, self.org_bones[-1], strip_org(self.org_bones[-1]))
        head_mch = new_bone(self.obj, make_mechanism_name(strip_org(self.org_bones[-1])))
        if self.isolate:
            head_socket1 = copy_bone(self.obj, self.org_bones[-1], make_mechanism_name(strip_org(self.org_bones[-1] + ".socket1")))
            head_socket2 = copy_bone(self.obj, self.org_bones[-1], make_mechanism_name(strip_org(self.org_bones[-1] + ".socket2")))

        # Create neck chain bones
        neck = []
        helpers = []
        for name in self.org_bones:
            neck += [copy_bone(self.obj, name, make_mechanism_name(strip_org(name)))]
            helpers += [copy_bone(self.obj, neck_child, make_mechanism_name(strip_org(name + ".02")))]

        # Fetch edit bones
        eb = self.obj.data.edit_bones

        neck_ctrl_e = eb[neck_ctrl]
        neck_follow_e = eb[neck_follow]
        neck_child_e = eb[neck_child]
        head_ctrl_e = eb[head_ctrl]
        head_mch_e = eb[head_mch]
        if self.isolate:
            head_socket1_e = eb[head_socket1]
            head_socket2_e = eb[head_socket2]

        # Parenting
        head_ctrl_e.use_connect = False
        head_ctrl_e.parent = neck_ctrl_e.parent
        head_mch_e.use_connect = False
        head_mch_e.parent = head_ctrl_e

        if self.isolate:
            head_socket1_e.use_connect = False
            head_socket1_e.parent = neck_ctrl_e.parent

            head_socket2_e.use_connect = False
            head_socket2_e.parent = None

            head_ctrl_e.parent = head_socket2_e

        for (name1, name2) in zip(neck, helpers):
            eb[name1].use_connect = False
            eb[name1].parent = eb[name2]
            eb[name2].use_connect = False
            eb[name2].parent = neck_ctrl_e.parent

        neck_follow_e.use_connect = False
        neck_follow_e.parent = neck_ctrl_e.parent
        neck_child_e.use_connect = False
        neck_child_e.parent = neck_ctrl_e
        neck_ctrl_e.parent = neck_follow_e

        # Position
        put_bone(self.obj, neck_follow, neck_ctrl_e.head)
        put_bone(self.obj, neck_child, neck_ctrl_e.head)
        put_bone(self.obj, head_ctrl, neck_ctrl_e.head)
        put_bone(self.obj, head_mch, neck_ctrl_e.head)
        head_mch_e.length = head_ctrl_e.length / 2
        neck_child_e.length = neck_ctrl_e.length / 2

        if self.isolate:
            put_bone(self.obj, head_socket1, neck_ctrl_e.head)
            head_mch_e.length /= 2

            put_bone(self.obj, head_socket2, neck_ctrl_e.head)
            head_mch_e.length /= 3

        for (name1, name2) in zip(neck, helpers):
            put_bone(self.obj, name2, eb[name1].head)
            eb[name2].length = eb[name1].length / 2

        # Switch to object mode
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones
        neck_ctrl_p = pb[neck_ctrl]
        neck_follow_p = pb[neck_follow]
        # neck_child_p = pb[neck_child]  # UNUSED
        head_ctrl_p = pb[head_ctrl]
        if self.isolate:
            # head_socket1_p = pb[head_socket1]  # UNUSED
            head_socket2_p = pb[head_socket2]

        # Custom bone appearance
        neck_ctrl_p.custom_shape_transform = pb[self.org_bones[(len(self.org_bones) - 1) // 2]]
        head_ctrl_p.custom_shape_transform = pb[self.org_bones[-1]]

        # Custom properties
        prop = rna_idprop_ui_prop_get(head_ctrl_p, "inf_extent", create=True)
        head_ctrl_p["inf_extent"] = 0.5
        prop["min"] = 0.0
        prop["max"] = 1.0
        prop["soft_min"] = 0.0
        prop["soft_max"] = 1.0

        prop = rna_idprop_ui_prop_get(head_ctrl_p, "neck_follow", create=True)
        head_ctrl_p["neck_follow"] = 1.0
        prop["min"] = 0.0
        prop["max"] = 2.0
        prop["soft_min"] = 0.0
        prop["soft_max"] = 1.0

        if self.isolate:
            prop = rna_idprop_ui_prop_get(head_ctrl_p, "isolate", create=True)
            head_ctrl_p["isolate"] = 0.0
            prop["min"] = 0.0
            prop["max"] = 1.0
            prop["soft_min"] = 0.0
            prop["soft_max"] = 1.0

        # Constraints

        # Neck follow
        con = neck_follow_p.constraints.new('COPY_ROTATION')
        con.name = "copy_rotation"
        con.target = self.obj
        con.subtarget = head_ctrl

        fcurve = con.driver_add("influence")
        driver = fcurve.driver
        var = driver.variables.new()
        driver.type = 'SCRIPTED'
        var.name = "follow"
        var.targets[0].id_type = 'OBJECT'
        var.targets[0].id = self.obj
        var.targets[0].data_path = head_ctrl_p.path_from_id() + '["neck_follow"]'
        driver.expression = "follow / 2"

        # Isolate
        if self.isolate:
            con = head_socket2_p.constraints.new('COPY_LOCATION')
            con.name = "copy_location"
            con.target = self.obj
            con.subtarget = head_socket1

            con = head_socket2_p.constraints.new('COPY_TRANSFORMS')
            con.name = "copy_transforms"
            con.target = self.obj
            con.subtarget = head_socket1

            fcurve = con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'SCRIPTED'
            var.name = "isolate"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = head_ctrl_p.path_from_id() + '["isolate"]'
            driver.expression = "1.0 - isolate"

        # Neck chain
        first = True
        prev = None
        i = 0
        l = len(neck)
        for (name1, name2, org_name) in zip(neck, helpers, self.org_bones):
            con = pb[org_name].constraints.new('COPY_TRANSFORMS')
            con.name = "copy_transforms"
            con.target = self.obj
            con.subtarget = name1

            n_con = pb[name2].constraints.new('COPY_TRANSFORMS')
            n_con.name = "neck"
            n_con.target = self.obj
            n_con.subtarget = neck_child

            h_con = pb[name2].constraints.new('COPY_TRANSFORMS')
            h_con.name = "head"
            h_con.target = self.obj
            h_con.subtarget = head_mch

            con = pb[name2].constraints.new('COPY_LOCATION')
            con.name = "anchor"
            con.target = self.obj
            if first:
                con.subtarget = neck_ctrl
            else:
                con.subtarget = prev
                con.head_tail = 1.0

            # Drivers
            n = (i + 1) / l

            # Neck influence
            fcurve = n_con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'SCRIPTED'
            var.name = "ext"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = head_ctrl_p.path_from_id() + '["inf_extent"]'
            driver.expression = "1.0 if (%.4f > (1.0-ext) or (1.0-ext) == 0.0) else (%.4f / (1.0-ext))" % (n, n)

            # Head influence
            if (i + 1) == l:
                h_con.influence = 1.0
            else:
                fcurve = h_con.driver_add("influence")
                driver = fcurve.driver
                var = driver.variables.new()
                driver.type = 'SCRIPTED'
                var.name = "ext"
                var.targets[0].id_type = 'OBJECT'
                var.targets[0].id = self.obj
                var.targets[0].data_path = head_ctrl_p.path_from_id() + '["inf_extent"]'
                driver.expression = "0.0 if (%.4f <= (1.0-ext)) else ((%.4f - (1.0-ext)) / ext)" % (n, n)

            first = False
            prev = name1
            i += 1

        # Create control widgets
        w1 = create_circle_widget(self.obj, neck_ctrl, radius=1.0, head_tail=0.5)
        w2 = create_circle_widget(self.obj, head_ctrl, radius=1.0, head_tail=0.5)

        if w1 != None:
            obj_to_bone(w1, self.obj, self.org_bones[(len(self.org_bones) - 1) // 2])
        if w2 != None:
            obj_to_bone(w2, self.obj, self.org_bones[-1])

        # Return control bones
        return (head_ctrl, neck_ctrl)
    def generate(self):
        ui_script = ""
        for s, limb in self.sides.items():
            side_org_bones, ik_limb, fk_limb = limb
            (ulimb_ik, ulimb_str, flimb_ik, flimb_str, joint_str, elimb_ik,
             elimb_str) = ik_limb.generate()

            ulimb_fk, flimb_fk, elimb_fk = fk_limb.generate()

            bpy.ops.object.mode_set(mode='EDIT')
            eb = self.obj.data.edit_bones

            # Foot rig
            foot_fr = copy_bone(
                self.obj, self.org_bones[2],
                pantin_utils.strip_LR_numbers(
                    make_mechanism_name(strip_org(self.org_bones[2]))) +
                '.fr' + s)
            foot_tgt = copy_bone(
                self.obj, self.org_bones[2],
                pantin_utils.strip_LR_numbers(
                    make_mechanism_name(strip_org(self.org_bones[2]))) +
                '.tgt' + s)
            heel_fr = copy_bone(
                self.obj, self.org_bones[3],
                pantin_utils.strip_LR_numbers(
                    make_mechanism_name(strip_org(self.org_bones[3]))) +
                '.fr' + s)
            toe_fr = copy_bone(
                self.obj, self.org_bones[4],
                pantin_utils.strip_LR_numbers(
                    make_mechanism_name(strip_org(self.org_bones[4]))) +
                '.fr' + s)
            toe_ik_ctl = copy_bone(
                self.obj, self.org_bones[4],
                pantin_utils.strip_LR_numbers(strip_org(self.org_bones[4])) +
                '.IK' + s)
            toe_fk_ctl = copy_bone(
                self.obj, self.org_bones[4],
                pantin_utils.strip_LR_numbers(strip_org(self.org_bones[4])) +
                '.FK' + s)
            toe_pos = copy_bone(
                self.obj, self.org_bones[4],
                pantin_utils.strip_LR_numbers(
                    make_mechanism_name(strip_org(self.org_bones[4]))) +
                '.pos' + s)
            roll_fr = new_bone(self.obj, "Foot roll" + s)

            # Position
            eb[roll_fr].head = (eb[elimb_str].head + Vector(
                (-1, 0, 0)) * eb[elimb_str].length * 2)
            eb[roll_fr].tail = (eb[elimb_str].head + Vector(
                (-1, 0, 1)) * eb[elimb_str].length * 2)
            eb[roll_fr].layers = eb[elimb_ik].layers

            # IK foot horizontal and starting at heel
            eb[elimb_ik].head = eb[heel_fr].tail
            eb[elimb_ik].tail.z = eb[heel_fr].tail.z
            align_bone_x_axis(self.obj, elimb_ik, Vector((0, 0, 1)))

            align_bone_x_axis(self.obj, roll_fr, Vector((-1, 0, 0)))
            align_bone_x_axis(self.obj, foot_fr, Vector((-1, 0, 0)))
            align_bone_x_axis(self.obj, heel_fr, Vector((-1, 0, 0)))
            align_bone_x_axis(self.obj, toe_fr, Vector((-1, 0, 0)))

            # Parenting
            eb[foot_fr].parent = None
            eb[heel_fr].parent = None
            eb[toe_fr].parent = None

            flip_bone(self.obj, foot_fr)
            flip_bone(self.obj, heel_fr)
            flip_bone(self.obj, toe_fr)

            eb[foot_fr].use_connect = True
            eb[foot_fr].parent = eb[toe_fr]

            eb[foot_tgt].use_connect = True
            eb[foot_tgt].parent = eb[foot_fr]

            eb[toe_fr].use_connect = False
            eb[toe_fr].parent = eb[heel_fr]

            eb[toe_ik_ctl].use_connect = True
            eb[toe_ik_ctl].parent = eb[toe_fr]

            eb[toe_fk_ctl].use_connect = True
            eb[toe_fk_ctl].parent = eb[elimb_fk]

            eb[toe_pos].use_connect = False
            eb[toe_pos].parent = eb[elimb_str]

            eb[heel_fr].use_connect = False
            eb[heel_fr].parent = eb[elimb_ik]

            eb[roll_fr].use_connect = False
            eb[roll_fr].parent = eb[elimb_ik]

            if self.params.do_stretch:
                eb[elimb_str].use_connect = False

            # Def bones
            if s == '.L':
                Z_index = -self.params.Z_index
            else:
                Z_index = self.params.Z_index

            side_org_bones = side_org_bones[:3] + side_org_bones[
                -1:]  # Ignore heel
            for i, b in enumerate(side_org_bones):
                def_bone_name = pantin_utils.strip_LR_numbers(strip_org(b))
                def_bone = pantin_utils.create_deformation(
                    self.obj,
                    b,
                    member_index=Z_index,
                    bone_index=i,
                    new_name=def_bone_name + s)

            # Set layers if specified
            active_layer = pantin_utils.layers_to_index(eb[ulimb_ik].layers)
            right_offset = self.params.right_offset if self.params.duplicate_lr else 0
            if s == '.R':
                for b in (ulimb_ik, joint_str, elimb_ik, roll_fr, toe_ik_ctl):
                    eb[b].layers = get_layers(active_layer + right_offset)
                for b in (ulimb_fk, flimb_fk, elimb_fk, toe_fk_ctl):
                    eb[b].layers = get_layers(active_layer +
                                              self.params.fk_offset +
                                              right_offset)
            elif s == '.L':
                for b in (ulimb_fk, flimb_fk, elimb_fk, toe_fk_ctl):
                    eb[b].layers = get_layers(active_layer +
                                              self.params.fk_offset)

            bpy.ops.object.mode_set(mode='OBJECT')
            pb = self.obj.pose.bones

            # Bone settings
            pb[roll_fr].rotation_mode = 'XZY'
            pb[roll_fr].lock_location = [True] * 3
            pb[roll_fr].lock_rotation = [True, True, False]
            pb[roll_fr].lock_scale = [True] * 3
            pb[foot_fr].rotation_mode = 'XZY'

            # Widgets
            # IK
            global_scale = self.obj.dimensions[2]
            member_factor = 0.06
            if s == '.R':
                side_factor = 1.2
            else:
                side_factor = 1.0
            widget_size = global_scale * member_factor * side_factor
            pantin_utils.create_aligned_circle_widget(self.obj,
                                                      ulimb_ik,
                                                      number_verts=3,
                                                      radius=widget_size)
            pantin_utils.create_aligned_circle_widget(self.obj,
                                                      joint_str,
                                                      radius=widget_size)

            # FK
            widget_size = 0.5
            for bone in (ulimb_fk, flimb_fk, elimb_fk, toe_fk_ctl):
                pantin_utils.create_capsule_widget(self.obj,
                                                   bone,
                                                   length=widget_size,
                                                   width=widget_size * 0.2,
                                                   head_tail=0.5,
                                                   horizontal=False,
                                                   overshoot=True)

                # Default follow value
                pb[ulimb_fk]["follow"] = 0.0

            # Foot WGT
            down = pb[heel_fr].head.z
            left = pb[heel_fr].head.x - (side_factor - 1) * pb[heel_fr].length
            right = pb[foot_fr].head.x
            up = pb[foot_fr].tail.z + (side_factor - 1) * pb[heel_fr].length

            foot_verts = ((left, down), (left, up),
                          (right, down + (up - down) * 2 / 3), (right, down))
            pantin_utils.create_aligned_polygon_widget(self.obj, elimb_ik,
                                                       foot_verts)

            # Toe WGT
            left = right
            right = pb[toe_fr].head.x + (side_factor - 1) * pb[heel_fr].length
            up = down + (up - down) * 2 / 3

            # TODO investigate why moving an edit bones
            # screws up widgets' matrices (foot_ik has moved)
            toe_verts = ((left, down), (left, up),
                         (right, down + (up - down) * 2 / 3), (right, down))
            pantin_utils.create_aligned_polygon_widget(self.obj, toe_ik_ctl,
                                                       toe_verts)

            pantin_utils.create_aligned_crescent_widget(self.obj,
                                                        roll_fr,
                                                        radius=side_factor *
                                                        pb[roll_fr].length / 2)

            # Constraints
            foot_fr_p = pb[foot_fr]
            heel_fr_p = pb[heel_fr]
            toe_fr_p = pb[toe_fr]
            roll_fr_p = pb[roll_fr]

            hor_vector = Vector((1, 0, 0))
            foot_rotation = (foot_fr_p.vector.rotation_difference(
                hor_vector).to_euler('XZY'))
            toe_rotation = toe_fr_p.vector.rotation_difference(
                hor_vector).to_euler('XZY')

            foot_vertical_rot = foot_rotation[1] - pi / 2
            toe_vertical_rot = toe_rotation[1] - pi / 2

            con = foot_fr_p.constraints.new('TRANSFORM')
            con.name = "roll"
            con.target = self.obj
            con.subtarget = roll_fr
            con.map_from = 'ROTATION'
            con.map_to = 'ROTATION'
            con.from_min_z_rot = radians(0.0)
            con.from_max_z_rot = radians(60.0)
            con.to_min_z_rot = radians(0.0)
            con.to_max_z_rot = foot_vertical_rot
            con.target_space = 'LOCAL'
            con.owner_space = 'LOCAL'

            con = heel_fr_p.constraints.new('TRANSFORM')
            con.name = "roll"
            con.target = self.obj
            con.subtarget = roll_fr
            con.map_from = 'ROTATION'
            con.map_to = 'ROTATION'
            con.from_min_z_rot = radians(-60.0)
            con.from_max_z_rot = 0.0
            con.to_min_z_rot = radians(-60.0)
            con.to_max_z_rot = 0.0
            con.target_space = 'LOCAL'
            con.owner_space = 'LOCAL'

            con = toe_fr_p.constraints.new('TRANSFORM')
            con.name = "roll"
            con.target = self.obj
            con.subtarget = roll_fr
            con.map_from = 'ROTATION'
            con.map_to = 'ROTATION'
            con.from_min_z_rot = radians(60.0)
            con.from_max_z_rot = radians(90.0)
            con.to_min_z_rot = radians(0.0)
            con.to_max_z_rot = toe_vertical_rot
            con.target_space = 'LOCAL'
            con.owner_space = 'LOCAL'

            # Compensate foot for heel
            con = foot_fr_p.constraints.new('TRANSFORM')
            con.name = "roll_compensate"
            con.target = self.obj
            con.subtarget = roll_fr
            con.map_from = 'ROTATION'
            con.map_to = 'ROTATION'
            con.from_min_z_rot = radians(60.0)
            con.from_max_z_rot = radians(90.0)
            con.to_min_z_rot = radians(0.0)
            con.to_max_z_rot = -toe_vertical_rot
            con.target_space = 'LOCAL'
            con.owner_space = 'LOCAL'

            # Roll limits
            con = roll_fr_p.constraints.new('LIMIT_ROTATION')
            con.name = "limit rotation"
            con.use_limit_z = True
            con.min_z = radians(-60.0)
            con.max_z = radians(90.0)
            con.owner_space = 'LOCAL'

            # Edit IK to follow the rolled foot instead of ik control
            con = pb[flimb_ik].constraints["ik"]
            con.subtarget = foot_tgt
            con = pb[elimb_str].constraints["copy rotation"]
            con.subtarget = foot_tgt

            con = pb[toe_pos].constraints.new('COPY_ROTATION')
            con.name = "copy rotation"
            con.target = self.obj
            con.subtarget = toe_ik_ctl
            #con.invert_x = True
            con.target_space = 'POSE'
            con.owner_space = 'POSE'

            # Optional stretch to the foot
            if self.params.do_stretch:
                con1 = pb[flimb_str].constraints.new('STRETCH_TO')
                con1.name = "stretch to foot"
                con1.target = self.obj
                con1.subtarget = foot_tgt
                con1.volume = 'NO_VOLUME'
                con1.rest_length = pb[flimb_str].length
                con1.keep_axis = 'PLANE_Z'

                con2 = pb[elimb_str].constraints.new('COPY_LOCATION')
                con2.name = "copy foot location"
                con2.target = self.obj
                con2.subtarget = foot_tgt
                con2.target_space = 'POSE'
                con2.owner_space = 'POSE'

                # Set up custom properties
                prop = rna_idprop_ui_prop_get(pb[elimb_ik],
                                              "foot_stretch",
                                              create=True)
                pb[elimb_ik]["foot_stretch"] = 1  # int(self.foot_stretch)
                prop["soft_min"] = 0
                prop["soft_max"] = 1
                prop["min"] = 0
                prop["max"] = 1

                # Drivers
                for c in (con1, con2):
                    driver = self.obj.driver_add(c.path_from_id("influence"))
                    driver.driver.expression = 'foot_stretch'
                    var_fs = driver.driver.variables.new()

                    var_fs.type = 'SINGLE_PROP'
                    var_fs.name = 'foot_stretch'
                    var_fs.targets[0].id_type = 'OBJECT'
                    var_fs.targets[0].id = self.obj
                    var_fs.targets[0].data_path = (
                        pb[elimb_ik].path_from_id() + '["foot_stretch"]')

            for org, ctrl in zip(
                    side_org_bones,
                [ulimb_str, flimb_str, elimb_str, toe_ik_ctl]):
                con = pb[org].constraints.new('COPY_TRANSFORMS')
                con.name = "copy_ik"
                con.target = self.obj
                con.subtarget = ctrl

            for org, ctrl in zip(side_org_bones,
                                 [ulimb_fk, flimb_fk, elimb_fk, toe_fk_ctl]):
                con = pb[org].constraints.new('COPY_TRANSFORMS')
                con.name = "copy_fk"
                con.target = self.obj
                con.subtarget = ctrl

                # Drivers
                driver = self.obj.driver_add(con.path_from_id("influence"))
                driver.driver.expression = 'fk'
                var_fk = driver.driver.variables.new()
                var_fk.type = 'SINGLE_PROP'
                var_fk.name = 'fk'
                var_fk.targets[0].id_type = 'OBJECT'
                var_fk.targets[0].id = self.obj
                var_fk.targets[
                    0].data_path = 'pose.bones["{}"]["IK_FK"]'.format(elimb_ik)

            ui_script += UI_PANTIN_LIMB_SCRIPT % (
                '"{}", "{}", "{}", "{}"'.format(
                    ulimb_ik, joint_str, elimb_ik,
                    toe_ik_ctl), '"{}", "{}", "{}", "{}"'.format(
                        ulimb_fk, flimb_fk, elimb_fk, toe_fk_ctl))

            if self.params.do_stretch:
                ui_script += """    layout.prop(pose_bones[ik_leg[2]], \
'["foot_stretch"]', \
text="Foot stretch (" + ik_leg[2] + ")", slider=True)
    """

        return {
            'script': [ui_script],
            'imports': UI_IMPORTS,
            'utilities': PANTIN_UTILS + [UTILITIES_PANTIN_LIMBS],
            'register': PANTIN_REGISTER + REGISTER_PANTIN_LIMBS,
            'register_props': REGISTER_PANTIN_PROPS,
        }
    def generate(self):
        bpy.ops.object.mode_set(mode='EDIT')

        eb = self.obj.data.edit_bones

        # Create the control bones

        ulimb_fk_name = pantin_utils.strip_LR_numbers(
            strip_org(self.org_bones[0])) + '.FK' + self.side_suffix
        follow_name = pantin_utils.strip_LR_numbers(
            make_mechanism_name(strip_org(
                self.org_bones[0]))) + '.FK.follow' + self.side_suffix
        target = eb[self.org_bones[0]].parent_recursive[-1].name
        target = strip_org(target)
        ulimb_fk, ulimb_follow = pantin_utils.make_follow(
            self.obj,
            self.org_bones[0],
            target,
            ctrl_name=ulimb_fk_name,
            follow_name=follow_name)
        flimb_fk = copy_bone(
            self.obj, self.org_bones[1],
            pantin_utils.strip_LR_numbers(strip_org(self.org_bones[1])) +
            '.FK' + self.side_suffix)
        elimb_fk = copy_bone(
            self.obj, self.org_bones[2],
            pantin_utils.strip_LR_numbers(strip_org(self.org_bones[2])) +
            '.FK' + self.side_suffix)

        # Get edit bones
        ulimb_fk_e = eb[ulimb_fk]
        flimb_fk_e = eb[flimb_fk]
        elimb_fk_e = eb[elimb_fk]

        # Parenting

        # Side org chain
        for b, o_b in zip(self.side_org_bones[1:], self.org_bones[1:]):
            eb[b].parent = eb[
                pantin_utils.strip_LR_numbers(eb[o_b].parent.name) +
                self.side_suffix]

        flimb_fk_e.parent = ulimb_fk_e
        elimb_fk_e.parent = flimb_fk_e

        # Object mode, get pose bones
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        ulimb_fk_p = pb[ulimb_fk]
        flimb_fk_p = pb[flimb_fk]
        elimb_fk_p = pb[elimb_fk]

        # Set up custom properties
        prop = rna_idprop_ui_prop_get(ulimb_fk_p, "pelvis_follow", create=True)
        ulimb_fk_p["pelvis_follow"] = int(self.pelvis_follow)
        prop["soft_min"] = 0
        prop["soft_max"] = 1
        prop["min"] = 0
        prop["max"] = 1

        return [ulimb_fk, flimb_fk, elimb_fk]
Exemple #28
0
    def generate(self):
        """ Generate the rig.
            Do NOT modify any of the original bones, except for adding constraints.
            The main armature should be selected and active before this is called.

        """
        bpy.ops.object.mode_set(mode='EDIT')

        make_rocker = False
        if self.org_bones[5] is not None:
            make_rocker = True

        # Create the bones
        thigh = copy_bone(self.obj, self.org_bones[0], make_mechanism_name(strip_org(insert_before_lr(self.org_bones[0], "_ik"))))
        shin = copy_bone(self.obj, self.org_bones[1], make_mechanism_name(strip_org(insert_before_lr(self.org_bones[1], "_ik"))))

        foot = copy_bone(self.obj, self.org_bones[2], strip_org(insert_before_lr(self.org_bones[2], "_ik")))
        foot_ik_target = copy_bone(self.obj, self.org_bones[2], make_mechanism_name(strip_org(insert_before_lr(self.org_bones[2], "_ik_target"))))
        pole = copy_bone(self.obj, self.org_bones[0], strip_org(insert_before_lr(self.org_bones[0], "_pole")))

        toe = copy_bone(self.obj, self.org_bones[3], strip_org(self.org_bones[3]))
        toe_parent = copy_bone(self.obj, self.org_bones[2], make_mechanism_name(strip_org(self.org_bones[3] + ".parent")))
        toe_parent_socket1 = copy_bone(self.obj, self.org_bones[2], make_mechanism_name(strip_org(self.org_bones[3] + ".socket1")))
        toe_parent_socket2 = copy_bone(self.obj, self.org_bones[2], make_mechanism_name(strip_org(self.org_bones[3] + ".socket2")))

        foot_roll = copy_bone(self.obj, self.org_bones[4], strip_org(insert_before_lr(self.org_bones[2], "_roll")))
        roll1 = copy_bone(self.obj, self.org_bones[4], make_mechanism_name(strip_org(self.org_bones[2] + ".roll.01")))
        roll2 = copy_bone(self.obj, self.org_bones[4], make_mechanism_name(strip_org(self.org_bones[2] + ".roll.02")))

        if make_rocker:
            rocker1 = copy_bone(self.obj, self.org_bones[5], make_mechanism_name(strip_org(self.org_bones[2] + ".rocker.01")))
            rocker2 = copy_bone(self.obj, self.org_bones[5], make_mechanism_name(strip_org(self.org_bones[2] + ".rocker.02")))

        visfoot = copy_bone(self.obj, self.org_bones[2], "VIS-" + strip_org(insert_before_lr(self.org_bones[2], "_ik")))
        vispole = copy_bone(self.obj, self.org_bones[1], "VIS-" + strip_org(insert_before_lr(self.org_bones[0], "_pole")))

        # Get edit bones
        eb = self.obj.data.edit_bones

        org_foot_e = eb[self.org_bones[2]]
        thigh_e = eb[thigh]
        shin_e = eb[shin]
        foot_e = eb[foot]
        foot_ik_target_e = eb[foot_ik_target]
        pole_e = eb[pole]
        toe_e = eb[toe]
        toe_parent_e = eb[toe_parent]
        toe_parent_socket1_e = eb[toe_parent_socket1]
        toe_parent_socket2_e = eb[toe_parent_socket2]
        foot_roll_e = eb[foot_roll]
        roll1_e = eb[roll1]
        roll2_e = eb[roll2]
        if make_rocker:
            rocker1_e = eb[rocker1]
            rocker2_e = eb[rocker2]
        visfoot_e = eb[visfoot]
        vispole_e = eb[vispole]

        # Parenting
        shin_e.parent = thigh_e

        foot_e.use_connect = False
        foot_e.parent = None
        foot_ik_target_e.use_connect = False
        foot_ik_target_e.parent = roll2_e

        pole_e.use_connect = False
        pole_e.parent = foot_e

        toe_e.parent = toe_parent_e
        toe_parent_e.use_connect = False
        toe_parent_e.parent = toe_parent_socket1_e
        toe_parent_socket1_e.use_connect = False
        toe_parent_socket1_e.parent = roll1_e
        toe_parent_socket2_e.use_connect = False
        toe_parent_socket2_e.parent = eb[self.org_bones[2]]

        foot_roll_e.use_connect = False
        foot_roll_e.parent = foot_e

        roll1_e.use_connect = False
        roll1_e.parent = foot_e

        roll2_e.use_connect = False
        roll2_e.parent = roll1_e

        visfoot_e.use_connect = False
        visfoot_e.parent = None

        vispole_e.use_connect = False
        vispole_e.parent = None

        if make_rocker:
            rocker1_e.use_connect = False
            rocker2_e.use_connect = False

            roll1_e.parent = rocker2_e
            rocker2_e.parent = rocker1_e
            rocker1_e.parent = foot_e

        # Misc
        foot_e.use_local_location = False

        visfoot_e.hide_select = True
        vispole_e.hide_select = True

        # Positioning
        vec = Vector(toe_e.vector)
        vec.normalize()
        foot_e.tail = foot_e.head + (vec * foot_e.length)
        foot_e.roll = toe_e.roll

        v1 = shin_e.tail - thigh_e.head

        if 'X' in self.primary_rotation_axis or 'Y' in self.primary_rotation_axis:
            v2 = v1.cross(shin_e.x_axis)
            if (v2 * shin_e.z_axis) > 0.0:
                v2 *= -1.0
        else:
            v2 = v1.cross(shin_e.z_axis)
            if (v2 * shin_e.x_axis) < 0.0:
                v2 *= -1.0
        v2.normalize()
        v2 *= v1.length

        if '-' in self.primary_rotation_axis:
            v2 *= -1

        pole_e.head = shin_e.head + v2
        pole_e.tail = pole_e.head + (Vector((0, 1, 0)) * (v1.length / 8))
        pole_e.roll = 0.0

        flip_bone(self.obj, toe_parent_socket1)
        flip_bone(self.obj, toe_parent_socket2)
        toe_parent_socket1_e.head = Vector(org_foot_e.tail)
        toe_parent_socket2_e.head = Vector(org_foot_e.tail)
        toe_parent_socket1_e.tail = Vector(org_foot_e.tail) + (Vector((0, 0, 1)) * foot_e.length / 2)
        toe_parent_socket2_e.tail = Vector(org_foot_e.tail) + (Vector((0, 0, 1)) * foot_e.length / 3)
        toe_parent_socket2_e.roll = toe_parent_socket1_e.roll

        tail = Vector(roll1_e.tail)
        roll1_e.tail = Vector(org_foot_e.tail)
        roll1_e.tail = Vector(org_foot_e.tail)
        roll1_e.head = tail
        roll2_e.head = Vector(org_foot_e.tail)
        foot_roll_e.head = Vector(org_foot_e.tail)
        put_bone(self.obj, foot_roll, roll1_e.head)
        foot_roll_e.length /= 2

        roll_axis = roll1_e.vector.cross(org_foot_e.vector)
        align_x_axis(self.obj, roll1, roll_axis)
        align_x_axis(self.obj, roll2, roll_axis)
        foot_roll_e.roll = roll2_e.roll

        visfoot_e.tail = visfoot_e.head + Vector((0, 0, v1.length / 32))
        vispole_e.tail = vispole_e.head + Vector((0, 0, v1.length / 32))

        if make_rocker:
            d = toe_e.y_axis.dot(rocker1_e.x_axis)
            if d >= 0.0:
                flip_bone(self.obj, rocker2)
            else:
                flip_bone(self.obj, rocker1)

        # Weird alignment issues.  Fix.
        toe_parent_e.head = Vector(org_foot_e.head)
        toe_parent_e.tail = Vector(org_foot_e.tail)
        toe_parent_e.roll = org_foot_e.roll

        foot_e.head = Vector(org_foot_e.head)

        foot_ik_target_e.head = Vector(org_foot_e.head)
        foot_ik_target_e.tail = Vector(org_foot_e.tail)

        # Determine the pole offset value
        plane = (shin_e.tail - thigh_e.head).normalized()
        vec1 = thigh_e.x_axis.normalized()
        vec2 = (pole_e.head - thigh_e.head).normalized()
        pole_offset = angle_on_plane(plane, vec1, vec2)

        # Object mode, get pose bones
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        # thigh_p = pb[thigh]  # UNUSED
        shin_p = pb[shin]
        foot_p = pb[foot]
        pole_p = pb[pole]
        foot_roll_p = pb[foot_roll]
        roll1_p = pb[roll1]
        roll2_p = pb[roll2]
        if make_rocker:
            rocker1_p = pb[rocker1]
            rocker2_p = pb[rocker2]
        toe_p = pb[toe]
        toe_parent_p = pb[toe_parent]
        toe_parent_socket1_p = pb[toe_parent_socket1]
        visfoot_p = pb[visfoot]
        vispole_p = pb[vispole]

        # Set the knee to only bend on the primary axis.
        if 'X' in self.primary_rotation_axis:
            shin_p.lock_ik_y = True
            shin_p.lock_ik_z = True
        elif 'Y' in self.primary_rotation_axis:
            shin_p.lock_ik_x = True
            shin_p.lock_ik_z = True
        else:
            shin_p.lock_ik_x = True
            shin_p.lock_ik_y = True

        # Foot roll control only rotates on x-axis, or x and y if rocker.
        foot_roll_p.rotation_mode = 'XYZ'
        if make_rocker:
            foot_roll_p.lock_rotation = False, False, True
        else:
            foot_roll_p.lock_rotation = False, True, True
        foot_roll_p.lock_location = True, True, True
        foot_roll_p.lock_scale = True, True, True

        # roll and rocker bones set to euler rotation
        roll1_p.rotation_mode = 'XYZ'
        roll2_p.rotation_mode = 'XYZ'
        if make_rocker:
            rocker1_p.rotation_mode = 'XYZ'
            rocker2_p.rotation_mode = 'XYZ'

        # Pole target only translates
        pole_p.lock_location = False, False, False
        pole_p.lock_rotation = True, True, True
        pole_p.lock_rotation_w = True
        pole_p.lock_scale = True, True, True

        # Set up custom properties
        if self.switch == True:
            prop = rna_idprop_ui_prop_get(foot_p, "ikfk_switch", create=True)
            foot_p["ikfk_switch"] = 0.0
            prop["soft_min"] = prop["min"] = 0.0
            prop["soft_max"] = prop["max"] = 1.0

        # Bend direction hint
        if self.bend_hint:
            con = shin_p.constraints.new('LIMIT_ROTATION')
            con.name = "bend_hint"
            con.owner_space = 'LOCAL'
            if self.primary_rotation_axis == 'X':
                con.use_limit_x = True
                con.min_x = pi / 10
                con.max_x = pi / 10
            elif self.primary_rotation_axis == '-X':
                con.use_limit_x = True
                con.min_x = -pi / 10
                con.max_x = -pi / 10
            elif self.primary_rotation_axis == 'Y':
                con.use_limit_y = True
                con.min_y = pi / 10
                con.max_y = pi / 10
            elif self.primary_rotation_axis == '-Y':
                con.use_limit_y = True
                con.min_y = -pi / 10
                con.max_y = -pi / 10
            elif self.primary_rotation_axis == 'Z':
                con.use_limit_z = True
                con.min_z = pi / 10
                con.max_z = pi / 10
            elif self.primary_rotation_axis == '-Z':
                con.use_limit_z = True
                con.min_z = -pi / 10
                con.max_z = -pi / 10

        # IK Constraint
        con = shin_p.constraints.new('IK')
        con.name = "ik"
        con.target = self.obj
        con.subtarget = foot_ik_target
        con.pole_target = self.obj
        con.pole_subtarget = pole
        con.pole_angle = pole_offset
        con.chain_count = 2

        # toe_parent constraint
        con = toe_parent_socket1_p.constraints.new('COPY_LOCATION')
        con.name = "copy_location"
        con.target = self.obj
        con.subtarget = toe_parent_socket2

        con = toe_parent_socket1_p.constraints.new('COPY_SCALE')
        con.name = "copy_scale"
        con.target = self.obj
        con.subtarget = toe_parent_socket2

        con = toe_parent_socket1_p.constraints.new('COPY_TRANSFORMS')  # drive with IK switch
        con.name = "fk"
        con.target = self.obj
        con.subtarget = toe_parent_socket2

        fcurve = con.driver_add("influence")
        driver = fcurve.driver
        var = driver.variables.new()
        driver.type = 'AVERAGE'
        var.name = "var"
        var.targets[0].id_type = 'OBJECT'
        var.targets[0].id = self.obj
        var.targets[0].data_path = foot_p.path_from_id() + '["ikfk_switch"]'
        mod = fcurve.modifiers[0]
        mod.poly_order = 1
        mod.coefficients[0] = 1.0
        mod.coefficients[1] = -1.0

        # Foot roll drivers
        fcurve = roll1_p.driver_add("rotation_euler", 0)
        driver = fcurve.driver
        var = driver.variables.new()
        driver.type = 'SCRIPTED'
        driver.expression = "min(0,var)"
        var.name = "var"
        var.targets[0].id_type = 'OBJECT'
        var.targets[0].id = self.obj
        var.targets[0].data_path = foot_roll_p.path_from_id() + '.rotation_euler[0]'

        fcurve = roll2_p.driver_add("rotation_euler", 0)
        driver = fcurve.driver
        var = driver.variables.new()
        driver.type = 'SCRIPTED'
        driver.expression = "max(0,var)"
        var.name = "var"
        var.targets[0].id_type = 'OBJECT'
        var.targets[0].id = self.obj
        var.targets[0].data_path = foot_roll_p.path_from_id() + '.rotation_euler[0]'

        if make_rocker:
            fcurve = rocker1_p.driver_add("rotation_euler", 0)
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'SCRIPTED'
            driver.expression = "max(0,-var)"
            var.name = "var"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = foot_roll_p.path_from_id() + '.rotation_euler[1]'

            fcurve = rocker2_p.driver_add("rotation_euler", 0)
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'SCRIPTED'
            driver.expression = "max(0,var)"
            var.name = "var"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = foot_roll_p.path_from_id() + '.rotation_euler[1]'

        # Constrain org bones to controls
        con = pb[self.org_bones[0]].constraints.new('COPY_TRANSFORMS')
        con.name = "ik"
        con.target = self.obj
        con.subtarget = thigh
        if self.switch == True:
            # IK/FK switch driver
            fcurve = con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'AVERAGE'
            var.name = "var"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = foot_p.path_from_id() + '["ikfk_switch"]'

        con = pb[self.org_bones[1]].constraints.new('COPY_TRANSFORMS')
        con.name = "ik"
        con.target = self.obj
        con.subtarget = shin
        if self.switch == True:
            # IK/FK switch driver
            fcurve = con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'AVERAGE'
            var.name = "var"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = foot_p.path_from_id() + '["ikfk_switch"]'

        con = pb[self.org_bones[2]].constraints.new('COPY_TRANSFORMS')
        con.name = "ik"
        con.target = self.obj
        con.subtarget = foot_ik_target
        if self.switch == True:
            # IK/FK switch driver
            fcurve = con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'AVERAGE'
            var.name = "var"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = foot_p.path_from_id() + '["ikfk_switch"]'

        con = pb[self.org_bones[3]].constraints.new('COPY_TRANSFORMS')
        con.name = "copy_transforms"
        con.target = self.obj
        con.subtarget = toe

        # VIS foot constraints
        con = visfoot_p.constraints.new('COPY_LOCATION')
        con.name = "copy_loc"
        con.target = self.obj
        con.subtarget = self.org_bones[2]

        con = visfoot_p.constraints.new('STRETCH_TO')
        con.name = "stretch_to"
        con.target = self.obj
        con.subtarget = foot
        con.volume = 'NO_VOLUME'
        con.rest_length = visfoot_p.length

        # VIS pole constraints
        con = vispole_p.constraints.new('COPY_LOCATION')
        con.name = "copy_loc"
        con.target = self.obj
        con.subtarget = self.org_bones[1]

        con = vispole_p.constraints.new('STRETCH_TO')
        con.name = "stretch_to"
        con.target = self.obj
        con.subtarget = pole
        con.volume = 'NO_VOLUME'
        con.rest_length = vispole_p.length

        # Set layers if specified
        if self.layers:
            foot_p.bone.layers = self.layers
            pole_p.bone.layers = self.layers
            foot_roll_p.bone.layers = self.layers
            visfoot_p.bone.layers = self.layers
            vispole_p.bone.layers = self.layers

            toe_p.bone.layers = [(i[0] or i[1]) for i in zip(toe_p.bone.layers, self.layers)]  # Both FK and IK layers

        # Create widgets
        create_line_widget(self.obj, vispole)
        create_line_widget(self.obj, visfoot)
        create_sphere_widget(self.obj, pole)
        create_circle_widget(self.obj, toe, radius=0.7, head_tail=0.5)

        ob = create_widget(self.obj, foot)
        if ob != None:
            verts = [(0.7, 1.5, 0.0), (0.7, -0.25, 0.0), (-0.7, -0.25, 0.0), (-0.7, 1.5, 0.0), (0.7, 0.723, 0.0), (-0.7, 0.723, 0.0), (0.7, 0.0, 0.0), (-0.7, 0.0, 0.0)]
            edges = [(1, 2), (0, 3), (0, 4), (3, 5), (4, 6), (1, 6), (5, 7), (2, 7)]
            mesh = ob.data
            mesh.from_pydata(verts, edges, [])
            mesh.update()

            mod = ob.modifiers.new("subsurf", 'SUBSURF')
            mod.levels = 2

        ob = create_widget(self.obj, foot_roll)
        if ob != None:
            verts = [(0.3999999761581421, 0.766044557094574, 0.6427875757217407), (0.17668449878692627, 3.823702598992895e-08, 3.2084670920085046e-08), (-0.17668461799621582, 9.874240447516058e-08, 8.285470443070153e-08), (-0.39999961853027344, 0.7660449147224426, 0.6427879333496094), (0.3562471270561218, 0.6159579753875732, 0.5168500542640686), (-0.35624682903289795, 0.6159582138061523, 0.5168502926826477), (0.20492683351039886, 0.09688037633895874, 0.0812922865152359), (-0.20492687821388245, 0.0968804731965065, 0.08129236847162247)]
            edges = [(1, 2), (0, 3), (0, 4), (3, 5), (1, 6), (4, 6), (2, 7), (5, 7)]
            mesh = ob.data
            mesh.from_pydata(verts, edges, [])
            mesh.update()

            mod = ob.modifiers.new("subsurf", 'SUBSURF')
            mod.levels = 2

        return [thigh, shin, foot, pole, foot_roll, foot_ik_target]
    def gen_control(self):
        """ Generate the control rig.

        """
        #---------------------------------
        # Create the hip and rib controls
        bpy.ops.object.mode_set(mode='EDIT')

        # Copy org bones
        hip_control = copy_bone(self.obj, self.org_bones[0],
                                strip_org(self.org_bones[0]))
        rib_control = copy_bone(self.obj, self.org_bones[-1],
                                strip_org(self.org_bones[-1]))
        rib_mch = copy_bone(
            self.obj, self.org_bones[-1],
            make_mechanism_name(strip_org(self.org_bones[-1] + ".follow")))
        hinge = copy_bone(
            self.obj, self.org_bones[0],
            make_mechanism_name(strip_org(self.org_bones[-1]) + ".hinge"))

        eb = self.obj.data.edit_bones

        hip_control_e = eb[hip_control]
        rib_control_e = eb[rib_control]
        rib_mch_e = eb[rib_mch]
        hinge_e = eb[hinge]

        # Parenting
        hip_control_e.use_connect = False
        rib_control_e.use_connect = False
        rib_mch_e.use_connect = False
        hinge_e.use_connect = False

        hinge_e.parent = None
        rib_control_e.parent = hinge_e
        rib_mch_e.parent = rib_control_e

        # Position
        flip_bone(self.obj, hip_control)
        flip_bone(self.obj, hinge)

        hinge_e.length /= 2
        rib_mch_e.length /= 2

        put_bone(self.obj, rib_control, hip_control_e.head)
        put_bone(self.obj, rib_mch, hip_control_e.head)

        bpy.ops.object.mode_set(mode='POSE')
        bpy.ops.object.mode_set(mode='EDIT')
        eb = self.obj.data.edit_bones

        # Switch to object mode
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones
        hip_control_p = pb[hip_control]
        rib_control_p = pb[rib_control]
        hinge_p = pb[hinge]

        # No translation on rib control
        rib_control_p.lock_location = [True, True, True]

        # Hip does not use local location
        hip_control_p.bone.use_local_location = False

        # Custom hinge property
        prop = rna_idprop_ui_prop_get(rib_control_p, "isolate", create=True)
        rib_control_p["isolate"] = 1.0
        prop["soft_min"] = prop["min"] = 0.0
        prop["soft_max"] = prop["max"] = 1.0

        # Constraints
        con = hinge_p.constraints.new('COPY_LOCATION')
        con.name = "copy_location"
        con.target = self.obj
        con.subtarget = hip_control

        con1 = hinge_p.constraints.new('COPY_ROTATION')
        con1.name = "isolate_off.01"
        con1.target = self.obj
        con1.subtarget = hip_control

        con2 = rib_control_p.constraints.new('COPY_SCALE')
        con2.name = "isolate_off.02"
        con2.target = self.obj
        con2.subtarget = hip_control
        con2.use_offset = True
        con2.target_space = 'LOCAL'
        con2.owner_space = 'LOCAL'

        # Drivers for "isolate_off"
        fcurve = con1.driver_add("influence")
        driver = fcurve.driver
        var = driver.variables.new()
        driver.type = 'AVERAGE'
        var.name = "var"
        var.targets[0].id_type = 'OBJECT'
        var.targets[0].id = self.obj
        var.targets[0].data_path = rib_control_p.path_from_id() + '["isolate"]'
        mod = fcurve.modifiers[0]
        mod.poly_order = 1
        mod.coefficients[0] = 1.0
        mod.coefficients[1] = -1.0

        fcurve = con2.driver_add("influence")
        driver = fcurve.driver
        var = driver.variables.new()
        driver.type = 'AVERAGE'
        var.name = "var"
        var.targets[0].id_type = 'OBJECT'
        var.targets[0].id = self.obj
        var.targets[0].data_path = rib_control_p.path_from_id() + '["isolate"]'
        mod = fcurve.modifiers[0]
        mod.poly_order = 1
        mod.coefficients[0] = 1.0
        mod.coefficients[1] = -1.0

        # Appearence
        hip_control_p.custom_shape_transform = pb[self.org_bones[0]]
        rib_control_p.custom_shape_transform = pb[self.org_bones[-1]]

        #-------------------------
        # Create flex spine chain

        # Create bones/parenting/positiong
        bpy.ops.object.mode_set(mode='EDIT')
        flex_bones = []
        flex_helpers = []
        prev_bone = None
        for b in self.org_bones:
            # Create bones
            bone = copy_bone(self.obj, b,
                             make_mechanism_name(strip_org(b) + ".flex"))
            helper = copy_bone(self.obj, rib_mch,
                               make_mechanism_name(strip_org(b) + ".flex_h"))
            flex_bones += [bone]
            flex_helpers += [helper]

            eb = self.obj.data.edit_bones
            bone_e = eb[bone]
            helper_e = eb[helper]

            # Parenting
            bone_e.use_connect = False
            helper_e.use_connect = False
            if prev_bone == None:
                helper_e.parent = eb[hip_control]
            bone_e.parent = helper_e

            # Position
            put_bone(self.obj, helper, bone_e.head)
            helper_e.length /= 4

            prev_bone = bone

        # Constraints
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones
        rib_control_p = pb[rib_control]
        rib_mch_p = pb[rib_mch]

        inc = 1.0 / (len(flex_helpers) - 1)
        inf = 1.0 / (len(flex_helpers) - 1)
        for b in zip(flex_helpers[1:], flex_bones[:-1], self.org_bones[1:]):
            bone_p = pb[b[0]]

            # Scale constraints
            con = bone_p.constraints.new('COPY_SCALE')
            con.name = "copy_scale1"
            con.target = self.obj
            con.subtarget = flex_helpers[0]
            con.influence = 1.0

            con = bone_p.constraints.new('COPY_SCALE')
            con.name = "copy_scale2"
            con.target = self.obj
            con.subtarget = rib_mch
            con.influence = inf

            # Bend constraints
            con = bone_p.constraints.new('COPY_ROTATION')
            con.name = "bend1"
            con.target = self.obj
            con.subtarget = flex_helpers[0]
            con.influence = 1.0

            con = bone_p.constraints.new('COPY_ROTATION')
            con.name = "bend2"
            con.target = self.obj
            con.subtarget = rib_mch
            con.influence = inf

            # If not the rib control
            if b[0] != flex_helpers[-1]:
                # Custom bend property
                prop_name = "bend_" + strip_org(b[2])
                prop = rna_idprop_ui_prop_get(rib_control_p,
                                              prop_name,
                                              create=True)
                rib_control_p[prop_name] = inf
                prop["min"] = 0.0
                prop["max"] = 1.0
                prop["soft_min"] = 0.0
                prop["soft_max"] = 1.0

                # Bend driver
                fcurve = con.driver_add("influence")
                driver = fcurve.driver
                var = driver.variables.new()
                driver.type = 'AVERAGE'
                var.name = prop_name
                var.targets[0].id_type = 'OBJECT'
                var.targets[0].id = self.obj
                var.targets[0].data_path = rib_control_p.path_from_id(
                ) + '["' + prop_name + '"]'

            # Location constraint
            con = bone_p.constraints.new('COPY_LOCATION')
            con.name = "copy_location"
            con.target = self.obj
            con.subtarget = b[1]
            con.head_tail = 1.0

            inf += inc

        #----------------------------
        # Create reverse spine chain

        # Create bones/parenting/positioning
        bpy.ops.object.mode_set(mode='EDIT')
        rev_bones = []
        prev_bone = None
        for b in zip(flex_bones, self.org_bones):
            # Create bones
            bone = copy_bone(self.obj, b[1],
                             make_mechanism_name(strip_org(b[1]) + ".reverse"))
            rev_bones += [bone]
            eb = self.obj.data.edit_bones
            bone_e = eb[bone]

            # Parenting
            bone_e.use_connect = False
            bone_e.parent = eb[b[0]]

            # Position
            flip_bone(self.obj, bone)
            bone_e.tail = Vector(eb[b[0]].head)
            #bone_e.head = Vector(eb[b[0]].tail)
            if prev_bone == None:
                pass  # Position base bone wherever you want, for now do nothing (i.e. position at hips)
            else:
                put_bone(self.obj, bone, eb[prev_bone].tail)

            prev_bone = bone

        # Constraints
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones
        prev_bone = None
        for bone in rev_bones:
            bone_p = pb[bone]

            con = bone_p.constraints.new('COPY_LOCATION')
            con.name = "copy_location"
            con.target = self.obj
            if prev_bone == None:
                con.subtarget = hip_control  # Position base bone wherever you want, for now hips
            else:
                con.subtarget = prev_bone
                con.head_tail = 1.0
            prev_bone = bone

        #---------------------------------------------
        # Constrain org bones to flex bone's rotation
        pb = self.obj.pose.bones
        for b in zip(self.org_bones, flex_bones):
            con = pb[b[0]].constraints.new('COPY_TRANSFORMS')
            con.name = "copy_rotation"
            con.target = self.obj
            con.subtarget = b[1]

        #---------------------------
        # Create pivot slide system
        pb = self.obj.pose.bones
        bone_p = pb[self.org_bones[0]]
        rib_control_p = pb[rib_control]

        # Custom pivot_slide property
        prop = rna_idprop_ui_prop_get(rib_control_p,
                                      "pivot_slide",
                                      create=True)
        rib_control_p["pivot_slide"] = 1.0 / len(self.org_bones)
        prop["min"] = 0.0
        prop["max"] = 1.0
        prop["soft_min"] = 1.0 / len(self.org_bones)
        prop["soft_max"] = 1.0 - (1.0 / len(self.org_bones))

        # Anchor constraint
        con = bone_p.constraints.new('COPY_LOCATION')
        con.name = "copy_location"
        con.target = self.obj
        con.subtarget = rev_bones[0]

        # Slide constraints
        i = 1
        tot = len(rev_bones)
        for rb in rev_bones:
            con = bone_p.constraints.new('COPY_LOCATION')
            con.name = "slide." + str(i)
            con.target = self.obj
            con.subtarget = rb
            con.head_tail = 1.0

            # Driver
            fcurve = con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'AVERAGE'
            var.name = "slide"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = rib_control_p.path_from_id(
            ) + '["pivot_slide"]'
            mod = fcurve.modifiers[0]
            mod.poly_order = 1
            mod.coefficients[0] = 1 - i
            mod.coefficients[1] = tot

            i += 1

        # Create control widgets
        w1 = create_circle_widget(self.obj,
                                  hip_control,
                                  radius=1.0,
                                  head_tail=1.0)
        w2 = create_circle_widget(self.obj,
                                  rib_control,
                                  radius=1.0,
                                  head_tail=0.0)

        if w1 != None:
            obj_to_bone(w1, self.obj, self.org_bones[0])
        if w2 != None:
            obj_to_bone(w2, self.obj, self.org_bones[-1])

        # Return control names
        return hip_control, rib_control
Exemple #30
0
    def gen_control(self):
        """ Generate the control rig.

        """
        bpy.ops.object.mode_set(mode='EDIT')
        eb = self.obj.data.edit_bones
        #-------------------------
        # Get rest slide position
        a = self.pivot_rest * len(self.org_bones)
        i = floor(a)
        a -= i
        if i == len(self.org_bones):
            i -= 1
            a = 1.0

        pivot_rest_pos = eb[self.org_bones[i]].head.copy()
        pivot_rest_pos += eb[self.org_bones[i]].vector * a

        #----------------------
        # Create controls

        # Create control bones
        controls = []
        for i in self.control_indices:
            name = copy_bone(self.obj, self.org_bones[i],
                             strip_org(self.org_bones[i]))
            controls += [name]

        # Create control parents
        control_parents = []
        for i in self.control_indices[1:-1]:
            name = new_bone(
                self.obj,
                make_mechanism_name("par_" + strip_org(self.org_bones[i])))
            control_parents += [name]

        # Create sub-control bones
        subcontrols = []
        for i in self.control_indices:
            name = new_bone(
                self.obj,
                make_mechanism_name("sub_" + strip_org(self.org_bones[i])))
            subcontrols += [name]

        # Create main control bone
        main_control = new_bone(self.obj, self.params.spine_main_control_name)

        # Create main control WGT bones
        main_wgt1 = new_bone(
            self.obj,
            make_mechanism_name(self.params.spine_main_control_name + ".01"))
        main_wgt2 = new_bone(
            self.obj,
            make_mechanism_name(self.params.spine_main_control_name + ".02"))

        eb = self.obj.data.edit_bones

        # Parent the main control
        eb[main_control].use_connect = False
        eb[main_control].parent = eb[self.org_bones[0]].parent

        # Parent the main WGTs
        eb[main_wgt1].use_connect = False
        eb[main_wgt1].parent = eb[main_control]
        eb[main_wgt2].use_connect = False
        eb[main_wgt2].parent = eb[main_wgt1]

        # Parent the controls and sub-controls
        for name, subname in zip(controls, subcontrols):
            eb[name].use_connect = False
            eb[name].parent = eb[main_control]
            eb[subname].use_connect = False
            eb[subname].parent = eb[name]

        # Parent the control parents
        for name, par_name in zip(controls[1:-1], control_parents):
            eb[par_name].use_connect = False
            eb[par_name].parent = eb[main_control]
            eb[name].parent = eb[par_name]

        # Position the main bone
        put_bone(self.obj, main_control, pivot_rest_pos)
        eb[main_control].length = sum([eb[b].length
                                       for b in self.org_bones]) / 2

        # Position the main WGTs
        eb[main_wgt1].tail = (0.0, 0.0,
                              sum([eb[b].length for b in self.org_bones]) / 4)
        eb[main_wgt2].length = sum([eb[b].length for b in self.org_bones]) / 4
        put_bone(self.obj, main_wgt1, pivot_rest_pos)
        put_bone(self.obj, main_wgt2, pivot_rest_pos)

        # Position the controls and sub-controls
        pos = eb[controls[0]].head.copy()
        for name, subname in zip(controls, subcontrols):
            put_bone(self.obj, name, pivot_rest_pos)
            put_bone(self.obj, subname, pivot_rest_pos)
            eb[subname].length = eb[name].length / 3

        # Position the control parents
        for name, par_name in zip(controls[1:-1], control_parents):
            put_bone(self.obj, par_name, pivot_rest_pos)
            eb[par_name].length = eb[name].length / 2

        #-----------------------------------------
        # Control bone constraints and properties
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        # Lock control locations
        for name in controls:
            bone = pb[name]
            bone.lock_location = True, True, True

        # Main control doesn't use local location
        pb[main_control].bone.use_local_location = False

        # Intermediate controls follow hips and spine
        for name, par_name, i in zip(controls[1:-1], control_parents,
                                     self.control_indices[1:-1]):
            bone = pb[par_name]

            # Custom bend_alpha property
            prop = rna_idprop_ui_prop_get(pb[name], "bend_alpha", create=True)
            pb[name]["bend_alpha"] = i / (len(self.org_bones) - 1
                                          )  # set bend alpha
            prop["min"] = 0.0
            prop["max"] = 1.0
            prop["soft_min"] = 0.0
            prop["soft_max"] = 1.0

            # Custom auto_rotate
            prop = rna_idprop_ui_prop_get(pb[name], "auto_rotate", create=True)
            pb[name]["auto_rotate"] = 1.0
            prop["min"] = 0.0
            prop["max"] = 1.0
            prop["soft_min"] = 0.0
            prop["soft_max"] = 1.0

            # Constraints
            con1 = bone.constraints.new('COPY_TRANSFORMS')
            con1.name = "copy_transforms"
            con1.target = self.obj
            con1.subtarget = subcontrols[0]

            con2 = bone.constraints.new('COPY_TRANSFORMS')
            con2.name = "copy_transforms"
            con2.target = self.obj
            con2.subtarget = subcontrols[-1]

            # Drivers
            fcurve = con1.driver_add("influence")
            driver = fcurve.driver
            driver.type = 'AVERAGE'
            var = driver.variables.new()
            var.name = "auto"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = pb[name].path_from_id(
            ) + '["auto_rotate"]'

            fcurve = con2.driver_add("influence")
            driver = fcurve.driver
            driver.type = 'SCRIPTED'
            driver.expression = "alpha * auto"
            var = driver.variables.new()
            var.name = "alpha"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = pb[name].path_from_id(
            ) + '["bend_alpha"]'
            var = driver.variables.new()
            var.name = "auto"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = pb[name].path_from_id(
            ) + '["auto_rotate"]'

        #-------------------------
        # Create flex spine chain
        bpy.ops.object.mode_set(mode='EDIT')
        flex_bones = []
        flex_subs = []
        prev_bone = None
        for b in self.org_bones:
            # Create bones
            bone = copy_bone(self.obj, b,
                             make_mechanism_name(strip_org(b) + ".flex"))
            sub = new_bone(self.obj,
                           make_mechanism_name(strip_org(b) + ".flex_s"))
            flex_bones += [bone]
            flex_subs += [sub]

            eb = self.obj.data.edit_bones
            bone_e = eb[bone]
            sub_e = eb[sub]

            # Parenting
            bone_e.use_connect = False
            sub_e.use_connect = False
            if prev_bone is None:
                sub_e.parent = eb[controls[0]]
            else:
                sub_e.parent = eb[prev_bone]
            bone_e.parent = sub_e

            # Position
            put_bone(self.obj, sub, bone_e.head)
            sub_e.length = bone_e.length / 4
            if prev_bone is not None:
                sub_e.use_connect = True

            prev_bone = bone

        #----------------------------
        # Create reverse spine chain

        # Create bones/parenting/positioning
        bpy.ops.object.mode_set(mode='EDIT')
        rev_bones = []
        prev_bone = None
        for b in zip(flex_bones, self.org_bones):
            # Create bones
            bone = copy_bone(self.obj, b[1],
                             make_mechanism_name(strip_org(b[1]) + ".reverse"))
            rev_bones += [bone]
            eb = self.obj.data.edit_bones
            bone_e = eb[bone]

            # Parenting
            bone_e.use_connect = False
            bone_e.parent = eb[b[0]]

            # Position
            flip_bone(self.obj, bone)
            bone_e.tail = Vector(eb[b[0]].head)
            #bone_e.head = Vector(eb[b[0]].tail)
            if prev_bone is None:
                put_bone(self.obj, bone, pivot_rest_pos)
            else:
                put_bone(self.obj, bone, eb[prev_bone].tail)

            prev_bone = bone

        # Constraints
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones
        prev_bone = None
        for bone in rev_bones:
            bone_p = pb[bone]

            con = bone_p.constraints.new('COPY_LOCATION')
            con.name = "copy_location"
            con.target = self.obj
            if prev_bone is None:
                con.subtarget = main_control
            else:
                con.subtarget = prev_bone
                con.head_tail = 1.0
            prev_bone = bone

        #----------------------------------------
        # Constrain original bones to flex spine
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        for obone, fbone in zip(self.org_bones, flex_bones):
            con = pb[obone].constraints.new('COPY_TRANSFORMS')
            con.name = "copy_transforms"
            con.target = self.obj
            con.subtarget = fbone

        #---------------------------
        # Create pivot slide system
        pb = self.obj.pose.bones
        bone_p = pb[self.org_bones[0]]
        main_control_p = pb[main_control]

        # Custom pivot_slide property
        prop = rna_idprop_ui_prop_get(main_control_p,
                                      "pivot_slide",
                                      create=True)
        main_control_p["pivot_slide"] = self.pivot_rest
        prop["min"] = 0.0
        prop["max"] = 1.0
        prop["soft_min"] = 1.0 / len(self.org_bones)
        prop["soft_max"] = 1.0 - (1.0 / len(self.org_bones))

        # Anchor constraints
        con = bone_p.constraints.new('COPY_LOCATION')
        con.name = "copy_location"
        con.target = self.obj
        con.subtarget = rev_bones[0]

        con = pb[main_wgt1].constraints.new('COPY_ROTATION')
        con.name = "copy_rotation"
        con.target = self.obj
        con.subtarget = rev_bones[0]

        # Slide constraints
        i = 1
        tot = len(rev_bones)
        for rb in rev_bones:
            con = bone_p.constraints.new('COPY_LOCATION')
            con.name = "slide." + str(i)
            con.target = self.obj
            con.subtarget = rb
            con.head_tail = 1.0

            # Driver
            fcurve = con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'AVERAGE'
            var.name = "slide"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = main_control_p.path_from_id(
            ) + '["pivot_slide"]'
            mod = fcurve.modifiers[0]
            mod.poly_order = 1
            mod.coefficients[0] = 1 - i
            mod.coefficients[1] = tot

            # Main WGT
            con = pb[main_wgt1].constraints.new('COPY_ROTATION')
            con.name = "slide." + str(i)
            con.target = self.obj
            con.subtarget = rb

            # Driver
            fcurve = con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'AVERAGE'
            var.name = "slide"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = main_control_p.path_from_id(
            ) + '["pivot_slide"]'
            mod = fcurve.modifiers[0]
            mod.poly_order = 1
            mod.coefficients[0] = 1.5 - i
            mod.coefficients[1] = tot

            i += 1

        #----------------------------------
        # Constrain flex spine to controls
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        # Constrain the bones that correspond exactly to the controls
        for i, name in zip(self.control_indices, subcontrols):
            con = pb[flex_subs[i]].constraints.new('COPY_TRANSFORMS')
            con.name = "copy_transforms"
            con.target = self.obj
            con.subtarget = name

        # Constrain the bones in-between the controls
        for i, j, name1, name2 in zip(self.control_indices,
                                      self.control_indices[1:], subcontrols,
                                      subcontrols[1:]):
            if (i + 1) < j:
                for n in range(i + 1, j):
                    bone = pb[flex_subs[n]]
                    # Custom bend_alpha property
                    prop = rna_idprop_ui_prop_get(bone,
                                                  "bend_alpha",
                                                  create=True)
                    bone["bend_alpha"] = (n - i) / (j - i)  # set bend alpha
                    prop["min"] = 0.0
                    prop["max"] = 1.0
                    prop["soft_min"] = 0.0
                    prop["soft_max"] = 1.0

                    con = bone.constraints.new('COPY_TRANSFORMS')
                    con.name = "copy_transforms"
                    con.target = self.obj
                    con.subtarget = name1

                    con = bone.constraints.new('COPY_TRANSFORMS')
                    con.name = "copy_transforms"
                    con.target = self.obj
                    con.subtarget = name2

                    # Driver
                    fcurve = con.driver_add("influence")
                    driver = fcurve.driver
                    var = driver.variables.new()
                    driver.type = 'AVERAGE'
                    var.name = "alpha"
                    var.targets[0].id_type = 'OBJECT'
                    var.targets[0].id = self.obj
                    var.targets[0].data_path = bone.path_from_id(
                    ) + '["bend_alpha"]'

        #-------------
        # Final stuff
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        # Control appearance
        # Main
        pb[main_control].custom_shape_transform = pb[main_wgt2]
        w = create_compass_widget(self.obj, main_control)
        if w != None:
            obj_to_bone(w, self.obj, main_wgt2)

        # Spines
        for name, i in zip(controls[1:-1], self.control_indices[1:-1]):
            pb[name].custom_shape_transform = pb[self.org_bones[i]]
            # Create control widgets
            w = create_circle_widget(self.obj,
                                     name,
                                     radius=1.0,
                                     head_tail=0.5,
                                     with_line=True)
            if w != None:
                obj_to_bone(w, self.obj, self.org_bones[i])
        # Hips
        pb[controls[0]].custom_shape_transform = pb[self.org_bones[0]]
        # Create control widgets
        w = create_circle_widget(self.obj,
                                 controls[0],
                                 radius=1.0,
                                 head_tail=0.5,
                                 with_line=True)
        if w != None:
            obj_to_bone(w, self.obj, self.org_bones[0])

        # Ribs
        pb[controls[-1]].custom_shape_transform = pb[self.org_bones[-1]]
        # Create control widgets
        w = create_circle_widget(self.obj,
                                 controls[-1],
                                 radius=1.0,
                                 head_tail=0.5,
                                 with_line=True)
        if w != None:
            obj_to_bone(w, self.obj, self.org_bones[-1])

        # Layers
        pb[main_control].bone.layers = pb[self.org_bones[0]].bone.layers

        return [main_control] + controls
Exemple #31
0
    def generate(self):
        """ Generate the rig.
            Do NOT modify any of the original bones, except for adding constraints.
            The main armature should be selected and active before this is called.

        """
        bpy.ops.object.mode_set(mode='EDIT')

        # Create upper arm bones
        if self.use_thigh_twist:
            thigh1 = copy_bone(
                self.obj, self.org_bones[0],
                make_deformer_name(strip_org(self.org_bones[0] + ".01")))
            thigh2 = copy_bone(
                self.obj, self.org_bones[0],
                make_deformer_name(strip_org(self.org_bones[0] + ".02")))
            utip = copy_bone(
                self.obj, self.org_bones[0],
                make_mechanism_name(strip_org(self.org_bones[0] + ".tip")))
        else:
            thigh = copy_bone(self.obj, self.org_bones[0],
                              make_deformer_name(strip_org(self.org_bones[0])))

        # Create forearm bones
        if self.use_shin_twist:
            shin1 = copy_bone(
                self.obj, self.org_bones[1],
                make_deformer_name(strip_org(self.org_bones[1] + ".01")))
            shin2 = copy_bone(
                self.obj, self.org_bones[1],
                make_deformer_name(strip_org(self.org_bones[1] + ".02")))
            stip = copy_bone(
                self.obj, self.org_bones[1],
                make_mechanism_name(strip_org(self.org_bones[1] + ".tip")))
        else:
            shin = copy_bone(self.obj, self.org_bones[1],
                             make_deformer_name(strip_org(self.org_bones[1])))

        # Create foot bone
        foot = copy_bone(self.obj, self.org_bones[2],
                         make_deformer_name(strip_org(self.org_bones[2])))

        # Create toe bone
        toe = copy_bone(self.obj, self.org_bones[3],
                        make_deformer_name(strip_org(self.org_bones[3])))

        # Get edit bones
        eb = self.obj.data.edit_bones

        org_thigh_e = eb[self.org_bones[0]]
        if self.use_thigh_twist:
            thigh1_e = eb[thigh1]
            thigh2_e = eb[thigh2]
            utip_e = eb[utip]
        else:
            thigh_e = eb[thigh]

        org_shin_e = eb[self.org_bones[1]]
        if self.use_shin_twist:
            shin1_e = eb[shin1]
            shin2_e = eb[shin2]
            stip_e = eb[stip]
        else:
            shin_e = eb[shin]

        org_foot_e = eb[self.org_bones[2]]
        foot_e = eb[foot]

        org_toe_e = eb[self.org_bones[3]]
        toe_e = eb[toe]

        # Parent and position thigh bones
        if self.use_thigh_twist:
            thigh1_e.use_connect = False
            thigh2_e.use_connect = False
            utip_e.use_connect = False

            thigh1_e.parent = org_thigh_e.parent
            thigh2_e.parent = org_thigh_e
            utip_e.parent = org_thigh_e

            center = Vector((org_thigh_e.head + org_thigh_e.tail) / 2)

            thigh1_e.tail = center
            thigh2_e.head = center
            put_bone(self.obj, utip, org_thigh_e.tail)
            utip_e.length = org_thigh_e.length / 8
        else:
            thigh_e.use_connect = False
            thigh_e.parent = org_thigh_e

        # Parent and position shin bones
        if self.use_shin_twist:
            shin1_e.use_connect = False
            shin2_e.use_connect = False
            stip_e.use_connect = False

            shin1_e.parent = org_shin_e
            shin2_e.parent = org_shin_e
            stip_e.parent = org_shin_e

            center = Vector((org_shin_e.head + org_shin_e.tail) / 2)

            shin1_e.tail = center
            shin2_e.head = center
            put_bone(self.obj, stip, org_shin_e.tail)
            stip_e.length = org_shin_e.length / 8

            # Align roll of shin2 with foot
            align_roll(self.obj, shin2, foot)
        else:
            shin_e.use_connect = False
            shin_e.parent = org_shin_e

        # Parent foot
        foot_e.use_connect = False
        foot_e.parent = org_foot_e

        # Parent toe
        toe_e.use_connect = False
        toe_e.parent = org_toe_e

        # Object mode, get pose bones
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        if self.use_thigh_twist:
            thigh1_p = pb[thigh1]
        if self.use_shin_twist:
            shin2_p = pb[shin2]
        foot_p = pb[foot]

        # Thigh constraints
        if self.use_thigh_twist:
            con = thigh1_p.constraints.new('COPY_LOCATION')
            con.name = "copy_location"
            con.target = self.obj
            con.subtarget = self.org_bones[0]

            con = thigh1_p.constraints.new('COPY_SCALE')
            con.name = "copy_scale"
            con.target = self.obj
            con.subtarget = self.org_bones[0]

            con = thigh1_p.constraints.new('DAMPED_TRACK')
            con.name = "track_to"
            con.target = self.obj
            con.subtarget = utip

        # Shin constraints
        if self.use_shin_twist:
            con = shin2_p.constraints.new('COPY_ROTATION')
            con.name = "copy_rotation"
            con.target = self.obj
            con.subtarget = foot

            con = shin2_p.constraints.new('DAMPED_TRACK')
            con.name = "track_to"
            con.target = self.obj
            con.subtarget = stip
def make_follow(obj, b, target, ctrl_name=None, follow_name=None):
    eb = obj.data.edit_bones

    # Control bone
    if ctrl_name is None:
        ctrl_name = strip_org(b)
    ctrl_bone = copy_bone(obj, b, ctrl_name)

    # Follow bone
    if follow_name is None:
        follow_name = make_mechanism_name(strip_org(b)) + ".follow"
    follow_bone = copy_bone(obj, b, follow_name)
    eb[follow_bone].tail = eb[follow_bone].head + Vector((0, 0, 0.1))
    align_bone_z_axis(obj, follow_bone, Vector((0, 1, 0)))

    # Parenting
    bone_parent_name = eb[b].parent.name
    eb[ctrl_bone].use_connect = False
    eb[follow_bone].parent = eb[bone_parent_name]
    eb[ctrl_bone].use_connect = False
    eb[ctrl_bone].parent = eb[follow_bone]

    bpy.ops.object.mode_set(mode='OBJECT')
    pb = obj.pose.bones

    # Set up custom properties
    prop = rna_idprop_ui_prop_get(pb[ctrl_bone], "follow", create=True)
    pb[ctrl_bone]["follow"] = 1.0
    prop["soft_min"] = 0.0
    prop["soft_max"] = 1.0
    prop["min"] = 0.0
    prop["max"] = 1.0

    # Get follow bone's parent chain
    parent_chain = pb[follow_bone].parent_recursive
    parent_chain = [strip_org(b.name) for b in parent_chain]
    parent_chain.reverse()

    for i_c, parent_name in enumerate(parent_chain):
        con = pb[follow_bone].constraints.new('COPY_ROTATION')
        con.name = 'follow_' + parent_name
        con.target = obj
        con.subtarget = parent_name
        con.use_offset = True
        con.use_x = True
        con.use_y = True
        con.use_z = True
        if i_c == len(parent_chain) - 1:
            con.invert_x = True
            con.invert_y = True
            con.invert_z = True
            con.invert_z = True
        con.target_space = 'LOCAL'
        con.owner_space = 'LOCAL'
        # TODO investigate strange behaviour with FLIP

        # Drivers
        driver = obj.driver_add(con.path_from_id("influence"))
        driver.driver.expression = '1-follow'
        var_pf = driver.driver.variables.new()

        var_pf.type = 'SINGLE_PROP'
        var_pf.name = 'follow'
        var_pf.targets[0].id_type = 'OBJECT'
        var_pf.targets[0].id = obj
        var_pf.targets[0].data_path = pb[ctrl_bone].path_from_id(
        ) + '["follow"]'
        bpy.ops.object.mode_set(mode='EDIT')

    return ctrl_bone, follow_bone
Exemple #33
0
    def generate(self):
        """ Generate the rig.
            Do NOT modify any of the original bones, except for adding constraints.
            The main armature should be selected and active before this is called.

        """
        bpy.ops.object.mode_set(mode='EDIT')

        # Create the control bones
        uarm = copy_bone(self.obj, self.org_bones[0], strip_org(self.org_bones[0]))
        farm = copy_bone(self.obj, self.org_bones[1], strip_org(self.org_bones[1]))
        hand = copy_bone(self.obj, self.org_bones[2], strip_org(self.org_bones[2]))

        # Create the hinge bones
        if self.org_parent != None:
            hinge = copy_bone(self.obj, self.org_parent, make_mechanism_name(uarm + ".hinge"))
            socket1 = copy_bone(self.obj, uarm, make_mechanism_name(uarm + ".socket1"))
            socket2 = copy_bone(self.obj, uarm, make_mechanism_name(uarm + ".socket2"))

        # Get edit bones
        eb = self.obj.data.edit_bones

        uarm_e = eb[uarm]
        farm_e = eb[farm]
        hand_e = eb[hand]

        if self.org_parent != None:
            hinge_e = eb[hinge]
            socket1_e = eb[socket1]
            socket2_e = eb[socket2]

        # Parenting
        farm_e.parent = uarm_e
        hand_e.parent = farm_e

        if self.org_parent != None:
            hinge_e.use_connect = False
            socket1_e.use_connect = False
            socket2_e.use_connect = False

            uarm_e.parent = hinge_e
            hinge_e.parent = socket2_e
            socket2_e.parent = None

        # Positioning
        if self.org_parent != None:
            center = (hinge_e.head + hinge_e.tail) / 2
            hinge_e.head = center
            socket1_e.length /= 4
            socket2_e.length /= 3

        # Object mode, get pose bones
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        uarm_p = pb[uarm]
        farm_p = pb[farm]
        hand_p = pb[hand]
        if self.org_parent != None:
            hinge_p = pb[hinge]

        if self.org_parent != None:
            # socket1_p = pb[socket1]  # UNUSED
            socket2_p = pb[socket2]

        # Set the elbow to only bend on the x-axis.
        farm_p.rotation_mode = 'XYZ'
        if 'X' in self.primary_rotation_axis:
            farm_p.lock_rotation = (False, True, True)
        elif 'Y' in self.primary_rotation_axis:
            farm_p.lock_rotation = (True, False, True)
        else:
            farm_p.lock_rotation = (True, True, False)

        # Hinge transforms are locked, for auto-ik
        if self.org_parent != None:
            hinge_p.lock_location = True, True, True
            hinge_p.lock_rotation = True, True, True
            hinge_p.lock_rotation_w = True
            hinge_p.lock_scale = True, True, True

        # Set up custom properties
        if self.org_parent != None:
            prop = rna_idprop_ui_prop_get(uarm_p, "isolate", create=True)
            uarm_p["isolate"] = 0.0
            prop["soft_min"] = prop["min"] = 0.0
            prop["soft_max"] = prop["max"] = 1.0

        # Hinge constraints / drivers
        if self.org_parent != None:
            con = socket2_p.constraints.new('COPY_LOCATION')
            con.name = "copy_location"
            con.target = self.obj
            con.subtarget = socket1

            con = socket2_p.constraints.new('COPY_TRANSFORMS')
            con.name = "isolate_off"
            con.target = self.obj
            con.subtarget = socket1

            # Driver
            fcurve = con.driver_add("influence")
            driver = fcurve.driver
            var = driver.variables.new()
            driver.type = 'AVERAGE'
            var.name = "var"
            var.targets[0].id_type = 'OBJECT'
            var.targets[0].id = self.obj
            var.targets[0].data_path = uarm_p.path_from_id() + '["isolate"]'
            mod = fcurve.modifiers[0]
            mod.poly_order = 1
            mod.coefficients[0] = 1.0
            mod.coefficients[1] = -1.0

        # Constrain org bones to controls
        con = pb[self.org_bones[0]].constraints.new('COPY_TRANSFORMS')
        con.name = "fk"
        con.target = self.obj
        con.subtarget = uarm

        con = pb[self.org_bones[1]].constraints.new('COPY_TRANSFORMS')
        con.name = "fk"
        con.target = self.obj
        con.subtarget = farm

        con = pb[self.org_bones[2]].constraints.new('COPY_TRANSFORMS')
        con.name = "fk"
        con.target = self.obj
        con.subtarget = hand

        # Set layers if specified
        if self.layers:
            uarm_p.bone.layers = self.layers
            farm_p.bone.layers = self.layers
            hand_p.bone.layers = self.layers

        # Create control widgets
        create_limb_widget(self.obj, uarm)
        create_limb_widget(self.obj, farm)

        ob = create_widget(self.obj, hand)
        if ob != None:
            verts = [(0.7, 1.5, 0.0), (0.7, -0.25, 0.0), (-0.7, -0.25, 0.0), (-0.7, 1.5, 0.0), (0.7, 0.723, 0.0), (-0.7, 0.723, 0.0), (0.7, 0.0, 0.0), (-0.7, 0.0, 0.0)]
            edges = [(1, 2), (0, 3), (0, 4), (3, 5), (4, 6), (1, 6), (5, 7), (2, 7)]
            mesh = ob.data
            mesh.from_pydata(verts, edges, [])
            mesh.update()

            mod = ob.modifiers.new("subsurf", 'SUBSURF')
            mod.levels = 2

        return [uarm, farm, hand]
Exemple #34
0
    def generate(self):
        """ Generate the rig.
            Do NOT modify any of the original bones, except for adding constraints.
            The main armature should be selected and active before this is called.

        """
        bpy.ops.object.mode_set(mode='EDIT')

        # Create upper arm bones
        if self.use_upper_arm_twist:
            uarm1 = copy_bone(
                self.obj, self.org_bones[0],
                make_deformer_name(strip_org(self.org_bones[0] + ".01")))
            uarm2 = copy_bone(
                self.obj, self.org_bones[0],
                make_deformer_name(strip_org(self.org_bones[0] + ".02")))
            utip = copy_bone(
                self.obj, self.org_bones[0],
                make_mechanism_name(strip_org(self.org_bones[0] + ".tip")))
        else:
            uarm = copy_bone(self.obj, self.org_bones[0],
                             make_deformer_name(strip_org(self.org_bones[0])))

        # Create forearm bones
        if self.use_forearm_twist:
            farm1 = copy_bone(
                self.obj, self.org_bones[1],
                make_deformer_name(strip_org(self.org_bones[1] + ".01")))
            farm2 = copy_bone(
                self.obj, self.org_bones[1],
                make_deformer_name(strip_org(self.org_bones[1] + ".02")))
            ftip = copy_bone(
                self.obj, self.org_bones[1],
                make_mechanism_name(strip_org(self.org_bones[1] + ".tip")))
        else:
            farm = copy_bone(self.obj, self.org_bones[1],
                             make_deformer_name(strip_org(self.org_bones[1])))

        # Create hand bone
        hand = copy_bone(self.obj, self.org_bones[2],
                         make_deformer_name(strip_org(self.org_bones[2])))

        # Get edit bones
        eb = self.obj.data.edit_bones

        org_uarm_e = eb[self.org_bones[0]]
        if self.use_upper_arm_twist:
            uarm1_e = eb[uarm1]
            uarm2_e = eb[uarm2]
            utip_e = eb[utip]
        else:
            uarm_e = eb[uarm]

        org_farm_e = eb[self.org_bones[1]]
        if self.use_forearm_twist:
            farm1_e = eb[farm1]
            farm2_e = eb[farm2]
            ftip_e = eb[ftip]
        else:
            farm_e = eb[farm]

        org_hand_e = eb[self.org_bones[2]]
        hand_e = eb[hand]

        # Parent and position upper arm bones
        if self.use_upper_arm_twist:
            uarm1_e.use_connect = False
            uarm2_e.use_connect = False
            utip_e.use_connect = False

            uarm1_e.parent = org_uarm_e.parent
            uarm2_e.parent = org_uarm_e
            utip_e.parent = org_uarm_e

            center = Vector((org_uarm_e.head + org_uarm_e.tail) / 2)

            uarm1_e.tail = center
            uarm2_e.head = center
            put_bone(self.obj, utip, org_uarm_e.tail)
            utip_e.length = org_uarm_e.length / 8
        else:
            uarm_e.use_connect = False
            uarm_e.parent = org_uarm_e

        # Parent and position forearm bones
        if self.use_forearm_twist:
            farm1_e.use_connect = False
            farm2_e.use_connect = False
            ftip_e.use_connect = False

            farm1_e.parent = org_farm_e
            farm2_e.parent = org_farm_e
            ftip_e.parent = org_farm_e

            center = Vector((org_farm_e.head + org_farm_e.tail) / 2)

            farm1_e.tail = center
            farm2_e.head = center
            put_bone(self.obj, ftip, org_farm_e.tail)
            ftip_e.length = org_farm_e.length / 8

            # Align roll of farm2 with hand
            align_roll(self.obj, farm2, hand)
        else:
            farm_e.use_connect = False
            farm_e.parent = org_farm_e

        # Parent hand
        hand_e.use_connect = False
        hand_e.parent = org_hand_e

        # Object mode, get pose bones
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        if self.use_upper_arm_twist:
            uarm1_p = pb[uarm1]
        if self.use_forearm_twist:
            farm2_p = pb[farm2]
        # hand_p = pb[hand]  # UNUSED

        # Upper arm constraints
        if self.use_upper_arm_twist:
            con = uarm1_p.constraints.new('COPY_LOCATION')
            con.name = "copy_location"
            con.target = self.obj
            con.subtarget = self.org_bones[0]

            con = uarm1_p.constraints.new('COPY_SCALE')
            con.name = "copy_scale"
            con.target = self.obj
            con.subtarget = self.org_bones[0]

            con = uarm1_p.constraints.new('DAMPED_TRACK')
            con.name = "track_to"
            con.target = self.obj
            con.subtarget = utip

        # Forearm constraints
        if self.use_forearm_twist:
            con = farm2_p.constraints.new('COPY_ROTATION')
            con.name = "copy_rotation"
            con.target = self.obj
            con.subtarget = hand

            con = farm2_p.constraints.new('DAMPED_TRACK')
            con.name = "track_to"
            con.target = self.obj
            con.subtarget = ftip
Exemple #35
0
    def generate(self):
        """ Generate the rig.
            Do NOT modify any of the original bones, except for adding constraints.
            The main armature should be selected and active before this is called.

        """
        bpy.ops.object.mode_set(mode='EDIT')

        # Create upper arm bones
        if self.use_thigh_twist:
            thigh1 = copy_bone(self.obj, self.org_bones[0], make_deformer_name(strip_org(self.org_bones[0] + ".01")))
            thigh2 = copy_bone(self.obj, self.org_bones[0], make_deformer_name(strip_org(self.org_bones[0] + ".02")))
            utip = copy_bone(self.obj, self.org_bones[0], make_mechanism_name(strip_org(self.org_bones[0] + ".tip")))
        else:
            thigh = copy_bone(self.obj, self.org_bones[0], make_deformer_name(strip_org(self.org_bones[0])))

        # Create forearm bones
        if self.use_shin_twist:
            shin1 = copy_bone(self.obj, self.org_bones[1], make_deformer_name(strip_org(self.org_bones[1] + ".01")))
            shin2 = copy_bone(self.obj, self.org_bones[1], make_deformer_name(strip_org(self.org_bones[1] + ".02")))
            stip = copy_bone(self.obj, self.org_bones[1], make_mechanism_name(strip_org(self.org_bones[1] + ".tip")))
        else:
            shin = copy_bone(self.obj, self.org_bones[1], make_deformer_name(strip_org(self.org_bones[1])))

        # Create foot bone
        foot = copy_bone(self.obj, self.org_bones[2], make_deformer_name(strip_org(self.org_bones[2])))

        # Create toe bone
        toe = copy_bone(self.obj, self.org_bones[3], make_deformer_name(strip_org(self.org_bones[3])))

        # Get edit bones
        eb = self.obj.data.edit_bones

        org_thigh_e = eb[self.org_bones[0]]
        if self.use_thigh_twist:
            thigh1_e = eb[thigh1]
            thigh2_e = eb[thigh2]
            utip_e = eb[utip]
        else:
            thigh_e = eb[thigh]

        org_shin_e = eb[self.org_bones[1]]
        if self.use_shin_twist:
            shin1_e = eb[shin1]
            shin2_e = eb[shin2]
            stip_e = eb[stip]
        else:
            shin_e = eb[shin]

        org_foot_e = eb[self.org_bones[2]]
        foot_e = eb[foot]

        org_toe_e = eb[self.org_bones[3]]
        toe_e = eb[toe]

        # Parent and position thigh bones
        if self.use_thigh_twist:
            thigh1_e.use_connect = False
            thigh2_e.use_connect = False
            utip_e.use_connect = False

            thigh1_e.parent = org_thigh_e.parent
            thigh2_e.parent = org_thigh_e
            utip_e.parent = org_thigh_e

            center = Vector((org_thigh_e.head + org_thigh_e.tail) / 2)

            thigh1_e.tail = center
            thigh2_e.head = center
            put_bone(self.obj, utip, org_thigh_e.tail)
            utip_e.length = org_thigh_e.length / 8
        else:
            thigh_e.use_connect = False
            thigh_e.parent = org_thigh_e

        # Parent and position shin bones
        if self.use_shin_twist:
            shin1_e.use_connect = False
            shin2_e.use_connect = False
            stip_e.use_connect = False

            shin1_e.parent = org_shin_e
            shin2_e.parent = org_shin_e
            stip_e.parent = org_shin_e

            center = Vector((org_shin_e.head + org_shin_e.tail) / 2)

            shin1_e.tail = center
            shin2_e.head = center
            put_bone(self.obj, stip, org_shin_e.tail)
            stip_e.length = org_shin_e.length / 8

            # Align roll of shin2 with foot
            align_roll(self.obj, shin2, foot)
        else:
            shin_e.use_connect = False
            shin_e.parent = org_shin_e

        # Parent foot
        foot_e.use_connect = False
        foot_e.parent = org_foot_e

        # Parent toe
        toe_e.use_connect = False
        toe_e.parent = org_toe_e

        # Object mode, get pose bones
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        if self.use_thigh_twist:
            thigh1_p = pb[thigh1]
        if self.use_shin_twist:
            shin2_p = pb[shin2]
        # foot_p = pb[foot]  # UNUSED

        # Thigh constraints
        if self.use_thigh_twist:
            con = thigh1_p.constraints.new('COPY_LOCATION')
            con.name = "copy_location"
            con.target = self.obj
            con.subtarget = self.org_bones[0]

            con = thigh1_p.constraints.new('COPY_SCALE')
            con.name = "copy_scale"
            con.target = self.obj
            con.subtarget = self.org_bones[0]

            con = thigh1_p.constraints.new('DAMPED_TRACK')
            con.name = "track_to"
            con.target = self.obj
            con.subtarget = utip

        # Shin constraints
        if self.use_shin_twist:
            con = shin2_p.constraints.new('COPY_ROTATION')
            con.name = "copy_rotation"
            con.target = self.obj
            con.subtarget = foot

            con = shin2_p.constraints.new('DAMPED_TRACK')
            con.name = "track_to"
            con.target = self.obj
            con.subtarget = stip
Exemple #36
0
    def generate(self):
        def parent_ctrl(eb, child, parent_to=None):
            """This tries to parent the child to a .L/.R bone."""
            # Get parent if none supplied
            if parent_to is None and eb[child].parent is not None:
                parent_to = eb[child].parent.name
            print(parent_to)

            if parent_to + self.params.object_side in eb:
                eb[child].parent = (eb[parent_to + self.params.object_side])
            elif parent_to in eb:
                eb[child].parent = eb[parent_to]
            elif 'MCH-Flip' in eb:
                eb[child].parent = eb['MCH-Flip']
            else:
                raise Exception(
                    "RIGIFY ERROR: Bone %s does not have a %s side" %
                    (strip_org(eb[b].parent.name), side))

        if self.params.use_parent_Z_index and self.org_parent is not None:
            # Get parent's Z indices
            bpy.ops.object.mode_set(mode='OBJECT')
            pb = self.obj.pose.bones
            def_parent_name = make_deformer_name(strip_org(self.org_parent))
            if (self.params.object_side != ".C"
                    and def_parent_name[-2:] not in ['.L', '.R']):
                def_parent_name += self.params.object_side
            if not def_parent_name in pb:
                raise Exception(
                    "RIGIFY ERROR: Bone %s does not have a %s side" %
                    (strip_org(self.org_parent), self.params.object_side))
            parent_p = pb[def_parent_name]
            member_Z_index = parent_p['member_index']
            bone_Z_index = 0
            for b in pb:
                if b.bone.use_deform and b.name.startswith('DEF-'):
                    if not 'member_index' in b:
                        raise MetarigError(
                            "RIGIFY ERROR: One rig bone with should not be connected. "
                            "Check armature for connected bones.")
                    if (b['member_index'] == member_Z_index
                            and b['bone_index'] > bone_Z_index):
                        bone_Z_index = b['bone_index']
            bone_Z_index += 1

            bpy.ops.object.mode_set(mode='EDIT')
        else:
            member_Z_index = self.params.member_Z_index
            bone_Z_index = self.params.first_bone_Z_index

        eb = self.obj.data.edit_bones

        ctrl_chain = []
        mch_chain = []
        # def_chain = []

        # if self.params.duplicate_lr:
        #     sides = ['.L', '.R']
        # else:
        side = self.params.object_side
        if side == '.C':
            side = ''

        # IK control bone
        if self.params.chain_type == 'IK':
            last_bone = self.org_bones[-1]
            ctrl_bone = new_bone(self.obj, strip_org(last_bone) + ".ik" + side)
            ctrl_bone_e = eb[ctrl_bone]
            ctrl_bone_e.head = eb[last_bone].tail
            ctrl_bone_e.tail = eb[last_bone].tail + Vector((0.3, 0, 0))
            align_bone_z_axis(self.obj, ctrl_bone, Vector((0, 1, 0)))
            ctrl_chain.append(ctrl_bone)
            # ctrl_bone_e.layers = layers

        for i, b in enumerate(self.org_bones):
            # Control bones
            if self.params.chain_type in {'Normal', 'Curve', 'Dynamic'}:
                if side in b:
                    ctrl_bone_name = b
                else:
                    ctrl_bone_name = b + side
                ctrl_bone_name = strip_org(ctrl_bone_name)
                ctrl_bone = copy_bone(self.obj, b, ctrl_bone_name)
                ctrl_bone_e = eb[ctrl_bone]
                ctrl_chain.append(ctrl_bone)

                if self.params.chain_type == 'Curve':
                    ctrl_bone_e.use_connect = False
                    if self.params.curve_parent_to_first:
                        if i > 0:
                            parent_ctrl(eb, ctrl_bone, parent_to=ctrl_chain[0])
                        else:
                            parent_ctrl(eb,
                                        ctrl_bone,
                                        parent_to=self.org_parent)
                    else:
                        parent_ctrl(eb, ctrl_bone, parent_to=self.org_parent)
                    ctrl_bone_e.tail = (ctrl_bone_e.head + Vector(
                        (0, 0, 1)) * ctrl_bone_e.length)
                    align_bone_z_axis(self.obj, ctrl_bone, Vector((0, 1, 0)))

                elif self.params.chain_type == 'Dynamic':
                    # Create an empty object to use slow parent
                    # What follows is quite dirty.
                    # ctrl_bone_e.parent = eb[self.org_parent]
                    parent_ctrl(eb, ctrl_bone)

                    empty_name = self.obj.name + "_" + strip_org(b) + '.dyn'
                    if empty_name in bpy.data.objects:
                        empty_obj = bpy.data.objects[empty_name]
                    else:
                        empty_obj = bpy.data.objects.new(empty_name, None)
                    if not empty_name in bpy.context.scene.objects:
                        bpy.context.scene.objects.link(empty_obj)
                    empty_obj.empty_draw_type = 'SPHERE'
                    empty_obj.empty_draw_size = self.obj.data.bones[
                        b].length / 10
                    empty_obj.hide = True

                    empty_obj.parent = self.obj
                    empty_obj.parent_type = 'BONE'
                    empty_obj.parent_bone = ctrl_bone
                    empty_obj.matrix_local = Matrix()
                    empty_obj.use_slow_parent = True
                    empty_obj.slow_parent_offset = 1.0

            # Mechanism bones
            if self.params.chain_type == 'Curve':
                stretch_bone = copy_bone(
                    self.obj, b,
                    make_mechanism_name(strip_org(b)) + '.stretch' + side)
                stretch_bone_e = eb[stretch_bone]
                stretch_bone_e.use_connect = False
                stretch_bone_e.parent = eb[ctrl_bone]
                mch_chain.append(stretch_bone)

            elif self.params.chain_type == 'IK':
                ik_bone = copy_bone(
                    self.obj, b,
                    make_mechanism_name(strip_org(b)) + '.ik' + side)
                ik_bone_e = eb[ik_bone]
                ik_bone_e.parent = eb[mch_chain[-1] if i > 0 else self.
                                      org_parent]
                mch_chain.append(ik_bone)

            elif self.params.chain_type == 'Dynamic':
                dyn_bone = copy_bone(
                    self.obj, b,
                    make_mechanism_name(strip_org(b)) + '.dyn' + side)
                dyn_bone_e = eb[dyn_bone]
                dyn_bone_e.parent = eb[ctrl_bone]
                mch_chain.append(dyn_bone)

            # Parenting
            # if self.params.chain_type == 'Normal':
            if (i == 0 and self.params.chain_type in ('Normal', 'Dynamic')):
                parent_ctrl(eb, ctrl_bone)

            # Def bones
            def_bone = pantin_utils.create_deformation(self.obj, b,
                                                       member_Z_index,
                                                       bone_Z_index + i, 0.0,
                                                       b + side)

        if self.params.chain_type == 'Curve':
            # Curve end bone
            last_bone = self.org_bones[-1]
            ctrl_bone = new_bone(self.obj,
                                 strip_org(last_bone) + ".end" + side)
            ctrl_bone_e = eb[ctrl_bone]
            last_bone_e = eb[last_bone]

            ctrl_bone_e.use_connect = False
            if self.params.curve_parent_to_first:
                ctrl_bone_e.parent = eb[ctrl_chain[0]]
            else:
                parent_ctrl(eb, ctrl_bone, parent_to=self.org_parent)
            ctrl_bone_e.head = last_bone_e.tail
            ctrl_bone_e.tail = (ctrl_bone_e.head +
                                (last_bone_e.tail - last_bone_e.head))
            align_bone_z_axis(self.obj, ctrl_bone, Vector((0, 1, 0)))
            ctrl_chain.append(ctrl_bone)
            ctrl_bone_e.layers = last_bone_e.layers
            # ctrl_bone_e.layers = layers

        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        # Pose bone settings
        if self.params.chain_type in ('IK', 'Curve', 'Dynamic'):
            pbone = pb[ctrl_chain[-1]]
            pbone.rotation_mode = 'XZY'
            pbone.lock_location = (False, False, True)
            pbone.lock_rotation = (True, True, False)
            pbone.lock_rotation_w = False
            pbone.lock_scale = (False, False, False)

        if self.params.chain_type in ('IK', 'Curve', 'Dynamic'):
            # Widgets
            for ctrl_bone in ctrl_chain:
                global_scale = pb[ctrl_bone].length  # self.obj.dimensions[2]
                # member_factor = 0.06
                widget_size = global_scale * 0.3  # * member_factor
                pantin_utils.create_aligned_circle_widget(self.obj,
                                                          ctrl_bone,
                                                          radius=widget_size)

            # Constraints
            for org, mch in zip(self.org_bones, mch_chain):
                con = pb[org].constraints.new('COPY_TRANSFORMS')
                con.name = "copy_transforms"
                con.target = self.obj
                con.subtarget = mch
        else:
            # Widgets
            widget_size = 0.5
            for bone in ctrl_chain:
                pantin_utils.create_capsule_widget(self.obj,
                                                   bone,
                                                   length=widget_size,
                                                   width=widget_size * 0.1,
                                                   head_tail=0.5,
                                                   horizontal=False)

            # Constraints
            for org, ctrl in zip(self.org_bones, ctrl_chain):
                con = pb[org].constraints.new('COPY_TRANSFORMS')
                con.name = "copy_transforms"
                con.target = self.obj
                con.subtarget = ctrl

        ui_script = ""

        if self.params.chain_type == 'Curve':
            for ctrl, mch in zip(ctrl_chain[1:], mch_chain):
                con = pb[mch].constraints.new('STRETCH_TO')
                con.name = "stretch_to"
                con.target = self.obj
                con.subtarget = ctrl
                con.volume = 'NO_VOLUME'
                con.keep_axis = 'PLANE_Z'

        elif self.params.chain_type == 'IK':
            last_bone = mch_chain[-1]
            con = pb[last_bone].constraints.new('IK')
            con.target = self.obj
            con.subtarget = ctrl_bone
            con.chain_count = len(self.org_bones)

            # # Pelvis follow
            # if self.params.do_flip:
            #     pantin_utils.create_ik_child_of(
            #         self.obj, ctrl_bone, self.params.pelvis_name)

        elif self.params.chain_type == 'Dynamic':
            for ctrl, mch in zip(ctrl_chain, mch_chain):
                con = pb[mch].constraints.new('DAMPED_TRACK')
                con.name = "damped_track"
                con.target = empty_obj
                # con.volume = 'NO_VOLUME'
                # con.keep_axis = 'PLANE_Z'
                # con.rest_length = pb[ctrl].length

            ui_script = script % (ctrl, dyn_bone)  # % ctrl_bone, MCH-bone.dyn

        elif self.params.chain_type == 'Def':
            # Modify constraints to add side suffix
            if side in ('.L', '.R'):
                for b in self.org_bones:
                    for con in pb[b].constraints:
                        if (hasattr(con, 'subtarget')
                                and con.subtarget + side in pb):
                            con.subtarget += side

        return {
            'script': [ui_script],
            'imports': UI_IMPORTS,
            'utilities': PANTIN_UTILS,
            'register': PANTIN_REGISTER,
            'register_props': REGISTER_PANTIN_PROPS,
        }
Exemple #37
0
    def generate(self):
        """ Generate the rig.
            Do NOT modify any of the original bones, except for adding constraints.
            The main armature should be selected and active before this is called.

        """
        bpy.ops.object.mode_set(mode='EDIT')

        # Create upper arm bones
        if self.use_upper_arm_twist:
            uarm1 = copy_bone(self.obj, self.org_bones[0], make_deformer_name(strip_org(self.org_bones[0] + ".01")))
            uarm2 = copy_bone(self.obj, self.org_bones[0], make_deformer_name(strip_org(self.org_bones[0] + ".02")))
            utip = copy_bone(self.obj, self.org_bones[0], make_mechanism_name(strip_org(self.org_bones[0] + ".tip")))
        else:
            uarm = copy_bone(self.obj, self.org_bones[0], make_deformer_name(strip_org(self.org_bones[0])))

        # Create forearm bones
        if self.use_forearm_twist:
            farm1 = copy_bone(self.obj, self.org_bones[1], make_deformer_name(strip_org(self.org_bones[1] + ".01")))
            farm2 = copy_bone(self.obj, self.org_bones[1], make_deformer_name(strip_org(self.org_bones[1] + ".02")))
            ftip = copy_bone(self.obj, self.org_bones[1], make_mechanism_name(strip_org(self.org_bones[1] + ".tip")))
        else:
            farm = copy_bone(self.obj, self.org_bones[1], make_deformer_name(strip_org(self.org_bones[1])))

        # Create hand bone
        hand = copy_bone(self.obj, self.org_bones[2], make_deformer_name(strip_org(self.org_bones[2])))

        # Get edit bones
        eb = self.obj.data.edit_bones

        org_uarm_e = eb[self.org_bones[0]]
        if self.use_upper_arm_twist:
            uarm1_e = eb[uarm1]
            uarm2_e = eb[uarm2]
            utip_e = eb[utip]
        else:
            uarm_e = eb[uarm]

        org_farm_e = eb[self.org_bones[1]]
        if self.use_forearm_twist:
            farm1_e = eb[farm1]
            farm2_e = eb[farm2]
            ftip_e = eb[ftip]
        else:
            farm_e = eb[farm]

        org_hand_e = eb[self.org_bones[2]]
        hand_e = eb[hand]

        # Parent and position upper arm bones
        if self.use_upper_arm_twist:
            uarm1_e.use_connect = False
            uarm2_e.use_connect = False
            utip_e.use_connect = False

            uarm1_e.parent = org_uarm_e.parent
            uarm2_e.parent = org_uarm_e
            utip_e.parent = org_uarm_e

            center = Vector((org_uarm_e.head + org_uarm_e.tail) / 2)

            uarm1_e.tail = center
            uarm2_e.head = center
            put_bone(self.obj, utip, org_uarm_e.tail)
            utip_e.length = org_uarm_e.length / 8
        else:
            uarm_e.use_connect = False
            uarm_e.parent = org_uarm_e

        # Parent and position forearm bones
        if self.use_forearm_twist:
            farm1_e.use_connect = False
            farm2_e.use_connect = False
            ftip_e.use_connect = False

            farm1_e.parent = org_farm_e
            farm2_e.parent = org_farm_e
            ftip_e.parent = org_farm_e

            center = Vector((org_farm_e.head + org_farm_e.tail) / 2)

            farm1_e.tail = center
            farm2_e.head = center
            put_bone(self.obj, ftip, org_farm_e.tail)
            ftip_e.length = org_farm_e.length / 8

            # Align roll of farm2 with hand
            align_roll(self.obj, farm2, hand)
        else:
            farm_e.use_connect = False
            farm_e.parent = org_farm_e

        # Parent hand
        hand_e.use_connect = False
        hand_e.parent = org_hand_e

        # Object mode, get pose bones
        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        if self.use_upper_arm_twist:
            uarm1_p = pb[uarm1]
        if self.use_forearm_twist:
            farm2_p = pb[farm2]
        # hand_p = pb[hand]  # UNUSED

        # Upper arm constraints
        if self.use_upper_arm_twist:
            con = uarm1_p.constraints.new('COPY_LOCATION')
            con.name = "copy_location"
            con.target = self.obj
            con.subtarget = self.org_bones[0]

            con = uarm1_p.constraints.new('COPY_SCALE')
            con.name = "copy_scale"
            con.target = self.obj
            con.subtarget = self.org_bones[0]

            con = uarm1_p.constraints.new('DAMPED_TRACK')
            con.name = "track_to"
            con.target = self.obj
            con.subtarget = utip

        # Forearm constraints
        if self.use_forearm_twist:
            con = farm2_p.constraints.new('COPY_ROTATION')
            con.name = "copy_rotation"
            con.target = self.obj
            con.subtarget = hand

            con = farm2_p.constraints.new('DAMPED_TRACK')
            con.name = "track_to"
            con.target = self.obj
            con.subtarget = ftip
    def generate(self):
        bpy.ops.object.mode_set(mode='EDIT')

        ctrl_chain = []

        eb = self.obj.data.edit_bones

        # Control bones
        # Global control
        ctrl_g = copy_bone(self.obj, self.mouth, strip_org(self.mouth))
        ctrl_g_eb = eb[ctrl_g]
        ctrl_chain.append(ctrl_g)
        if self.org_parent is not None:
            ctrl_g_eb.use_connect = False
            ctrl_g_eb.parent = eb[self.org_parent]

        # Right control
        ctrl_r_name = strip_org(self.ur.split('_')[0] + '.R')
        ctrl_r = new_bone(self.obj, ctrl_r_name)
        eb[ctrl_r].head = eb[self.ur].head
        eb[ctrl_r].tail = eb[self.ur].head + Vector(
            (0, 0, 1)) * eb[self.ur].length

        # Left control
        ctrl_l_name = strip_org(self.ul.split('_')[0] + '.L')
        ctrl_l = new_bone(self.obj, ctrl_l_name)
        eb[ctrl_l].head = eb[self.ul].tail
        eb[ctrl_l].tail = eb[self.ul].tail + Vector(
            (0, 0, 1)) * eb[self.ul].length

        # Up control
        ctrl_uc_name = strip_org(self.uc)
        ctrl_uc = new_bone(self.obj, ctrl_uc_name)
        eb[ctrl_uc].head = (eb[self.uc].head + eb[self.uc].tail) / 2
        eb[ctrl_uc].tail = eb[ctrl_uc].head + Vector(
            (0, 0, 1)) * eb[self.uc].length

        # Down control
        ctrl_lc_name = strip_org(self.lc)
        ctrl_lc = new_bone(self.obj, ctrl_lc_name)
        eb[ctrl_lc].head = (eb[self.lc].head + eb[self.lc].tail) / 2
        eb[ctrl_lc].tail = eb[ctrl_lc].head + Vector(
            (0, 0, 1)) * eb[self.lc].length

        for b in [ctrl_r, ctrl_uc, ctrl_lc, ctrl_l]:
            align_bone_x_axis(self.obj, b, Vector((-1, 0, 0)))
            eb[b].layers = eb[self.lc].layers
            eb[b].parent = eb[self.mouth]
            ctrl_chain.append(b)

        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones
        for b in [ctrl_r, ctrl_uc, ctrl_lc, ctrl_l]:
            pb[b].lock_location = (False, False, True)
            pb[b].lock_rotation = (True, True, False)
            pb[b].lock_rotation_w = False
            pb[b].lock_scale = (False, False, False)
            pb[b].rotation_mode = 'XZY'
        bpy.ops.object.mode_set(mode='EDIT')
        eb = self.obj.data.edit_bones

        # Stretch
        # RIGHT
        stretch_r_chain = []
        for bone in [self.ur, self.lr]:
            mch_b = copy_bone(
                self.obj, bone,
                pantin_utils.strip_LR(make_mechanism_name(strip_org(bone))) +
                '.stretch.R')
            mch_eb = eb[mch_b]
            mch_eb.parent = eb[ctrl_r]
            stretch_r_chain.append(mch_b)

        # CENTER
        stretch_c_chain = []
        for bone in [self.uc, self.lc]:
            mch_b = copy_bone(
                self.obj, bone,
                pantin_utils.strip_LR(make_mechanism_name(strip_org(bone))) +
                '.stretch')
            mch_eb = eb[mch_b]
            mch_eb.use_connect = False
            mch_eb.parent = eb[strip_org(bone)]
            stretch_c_chain.append(mch_b)

        #LEFT
        stretch_l_chain = []
        for i, bone in enumerate([self.ul, self.ll]):
            mch_b = copy_bone(
                self.obj, bone,
                pantin_utils.strip_LR(make_mechanism_name(strip_org(bone))) +
                '.stretch.L')
            mch_eb = eb[mch_b]
            mch_eb.parent = eb[stretch_c_chain[i]]
            stretch_l_chain.append(mch_b)

        # Def bones
        Z_index = self.params.Z_index
        for i, b in enumerate([
                self.mouth,
                stretch_l_chain[1],
                stretch_r_chain[1],
                stretch_c_chain[1],
                stretch_l_chain[0],
                stretch_r_chain[0],
                stretch_c_chain[0],
        ]):
            def_bone_name = b.split('.')[0][4:]
            if b[-1] in ('L', 'R'):
                def_bone_name += '.' + b[-1]
            def_bone = pantin_utils.create_deformation(self.obj,
                                                       b,
                                                       member_index=Z_index,
                                                       bone_index=i,
                                                       new_name=def_bone_name)
            if b == stretch_c_chain[1]:
                pantin_utils.create_deformation(
                    self.obj,
                    b,
                    member_index=Z_index,
                    bone_index=i + 1,
                    new_name=strip_org(self.org_bones[0]) + '_int')

        bpy.ops.object.mode_set(mode='OBJECT')
        pb = self.obj.pose.bones

        # Widgets
        wgt_radius = pb[ctrl_uc].length / 3
        for b in [ctrl_r, ctrl_l, ctrl_uc, ctrl_lc]:
            pantin_utils.create_aligned_circle_widget(self.obj,
                                                      b,
                                                      radius=wgt_radius)
        pantin_utils.create_aligned_circle_widget(self.obj,
                                                  ctrl_g,
                                                  radius=pb[ctrl_g].length,
                                                  head_tail=0.0,
                                                  width_ratio=2.0)

        # Constraints
        for src_b, target_b in zip(stretch_r_chain, stretch_c_chain):
            mch_pb = pb[src_b]
            con = mch_pb.constraints.new('STRETCH_TO')
            con.name = "stretch to"
            con.target = self.obj
            con.subtarget = target_b
            con.volume = 'NO_VOLUME'
            con.rest_length = mch_pb.length
            con.keep_axis = 'PLANE_Z'
        for src_b in stretch_l_chain:
            mch_pb = pb[src_b]
            con = mch_pb.constraints.new('STRETCH_TO')
            con.name = "stretch to"
            con.target = self.obj
            con.subtarget = ctrl_l
            con.volume = 'NO_VOLUME'
            con.rest_length = mch_pb.length
            con.keep_axis = 'PLANE_Z'

        for org, ctrl in zip(self.org_bones, [ctrl_g] + stretch_r_chain +
                             stretch_c_chain + stretch_l_chain):
            con = pb[org].constraints.new('COPY_TRANSFORMS')
            con.name = "copy_transforms"
            con.target = self.obj
            con.subtarget = ctrl

        return {
            'imports': UI_IMPORTS,
            'utilities': PANTIN_UTILS,
            'register': PANTIN_REGISTER,
            'register_props': REGISTER_PANTIN_PROPS,
        }