def _compute_lst(landsat_ds, mtl_dict, water_bodies_mask):
    # brightness temperature (band 10)
    radio_rescale = mtl_dict['RADIOMETRIC_RESCALING']
    thermal_constants = mtl_dict['TIRS_THERMAL_CONSTANTS']
    bt_arr = brightness_temp.brightness_temp(
        landsat_ds['tirs'].values, radio_rescale['RADIANCE_MULT_BAND_10'],
        radio_rescale['RADIANCE_ADD_BAND_10'],
        thermal_constants['K1_CONSTANT_BAND_10'],
        thermal_constants['K2_CONSTANT_BAND_10']) - 273.15

    ndvi_arr = _compute_ndvi(landsat_ds)
    min_ndvi = ndvi_arr.min()
    pv_arr = np.square((ndvi_arr - min_ndvi) / (ndvi_arr.max() - min_ndvi))

    eps_arr = np.zeros_like(pv_arr)
    eps_arr[water_bodies_mask] = eps_water
    eps_arr[(ndvi_arr < ndvi_soil) & ~water_bodies_mask] = eps_soil
    mid_cond = (ndvi_arr >= ndvi_soil) & (ndvi_arr <
                                          ndvi_veg) & ~water_bodies_mask
    pv_mid_arr = pv_arr[mid_cond]
    eps_arr[mid_cond] = eps_veg * pv_mid_arr + eps_soil * (1 - pv_mid_arr) + C
    eps_arr[(ndvi_arr >= ndvi_veg) & ~water_bodies_mask] = eps_veg

    # land surface temperature (putting it all together)
    # lst_arr = bt_arr / (1 + (lambd * bt_arr / rho) * np.log(eps_arr))
    lst_arr = bt_arr / (1 + (lambd * bt_arr / rho) * np.log(eps_arr))
    # correct for potential infinities arising from divisions by zero
    # (landsat 8's nodata)
    # lst_arr[~landsat_mask] = landsat_meta['nodata']
    # return np.nan_to_num(lst_arr, LANDSAT_NODATA)
    return lst_arr
Exemple #2
0
def _convert(arr: numpy.ndarray, band: str, metadata: Dict) -> numpy.ndarray:
    """Convert DN to TOA or Temp."""
    if band in ["1", "2", "3", "4", "5", "6", "7", "8", "9"]:  # OLI
        multi_reflect = metadata["RADIOMETRIC_RESCALING"].get(
            f"REFLECTANCE_MULT_BAND_{band}"
        )
        add_reflect = metadata["RADIOMETRIC_RESCALING"].get(
            f"REFLECTANCE_ADD_BAND_{band}"
        )
        sun_elev = metadata["IMAGE_ATTRIBUTES"]["SUN_ELEVATION"]

        arr = 10000 * reflectance.reflectance(
            arr, multi_reflect, add_reflect, sun_elev, src_nodata=0
        )

    elif band in ["10", "11"]:  # TIRS
        multi_rad = metadata["RADIOMETRIC_RESCALING"].get(f"RADIANCE_MULT_BAND_{band}")
        add_rad = metadata["RADIOMETRIC_RESCALING"].get(f"RADIANCE_ADD_BAND_{band}")
        k1 = metadata["TIRS_THERMAL_CONSTANTS"].get(f"K1_CONSTANT_BAND_{band}")
        k2 = metadata["TIRS_THERMAL_CONSTANTS"].get(f"K2_CONSTANT_BAND_{band}")

        arr = brightness_temp.brightness_temp(arr, multi_rad, add_rad, k1, k2)

    # TODO
    # elif band == "QA":

    return arr
Exemple #3
0
def test_brightness_temp(img, ML, AL, K1, K2):
    L = img.astype(np.float32) * ML + AL
    src_nodata = 0.0
    L[img == src_nodata] = np.nan
    Output = K2 / np.log((K1 / L) + 1)
    Result = brightness_temp.brightness_temp(img, ML, AL, K1, K2, src_nodata=0)
    np.testing.assert_array_equal(Output, Result)
Exemple #4
0
def test_brightness_temperature2(test_data):
    tif, tif_meta, tif_output, tif_shape, tif_output_meta, mtl = test_data
    band = 11

    M = toa_utils._load_mtl_key(
        mtl,
        ['L1_METADATA_FILE', 'RADIOMETRIC_RESCALING', 'RADIANCE_MULT_BAND_'],
        band)
    A = toa_utils._load_mtl_key(
        mtl,
        ['L1_METADATA_FILE', 'RADIOMETRIC_RESCALING', 'RADIANCE_ADD_BAND_'],
        band)
    K1 = toa_utils._load_mtl_key(
        mtl,
        ['L1_METADATA_FILE', 'TIRS_THERMAL_CONSTANTS', 'K1_CONSTANT_BAND_'],
        band)
    K2 = toa_utils._load_mtl_key(
        mtl,
        ['L1_METADATA_FILE', 'TIRS_THERMAL_CONSTANTS', 'K2_CONSTANT_BAND_'],
        band)

    assert isinstance(M, float)
    assert isinstance(A, float)
    assert isinstance(K1, float)
    assert isinstance(K2, float)
    BT = brightness_temp.brightness_temp(tif, M, A, K1, K2, src_nodata=0)
    assert BT.dtype == np.float32
    assert flex_compare(tif_output, BT)
Exemple #5
0
def landsat_min_max_worker(band, address, metadata, pmin=2, pmax=98,
                           width=1024, height=1024):
    """Retrieve histogram percentage cut for a Landsat-8 scene.

    Attributes
    ----------

    address : Landsat band AWS address
    band : Landsat band number
    metadata : Landsat metadata
    pmin : Histogram minimum cut (default: 2)
    pmax : Histogram maximum cut (default: 98)
    width : int, optional (default: 1024)
        Pixel width for the decimated read.
    height : int, optional (default: 1024)
        Pixel height for the decimated read.

    Returns
    -------
    out : list, int
        returns a list of the min/max histogram cut values.
    """

    if int(band) > 9:  # TIRS
        multi_rad = metadata['RADIOMETRIC_RESCALING'].get(
            'RADIANCE_MULT_BAND_{}'.format(band))

        add_rad = metadata['RADIOMETRIC_RESCALING'].get(
            'RADIANCE_ADD_BAND_{}'.format(band))

        k1 = metadata['TIRS_THERMAL_CONSTANTS'].get(
            'K1_CONSTANT_BAND_{}'.format(band))

        k2 = metadata['TIRS_THERMAL_CONSTANTS'].get(
            'K2_CONSTANT_BAND_{}'.format(band))

        with rasterio.open('{}_B{}.TIF'.format(address, band)) as src:
            arr = src.read(indexes=1,
                           out_shape=(height, width)).astype(src.profile['dtype'])
            arr = brightness_temp.brightness_temp(arr, multi_rad, add_rad, k1, k2)
    else:
        multi_reflect = metadata['RADIOMETRIC_RESCALING'].get(
            'REFLECTANCE_MULT_BAND_{}'.format(band))
        add_reflect = metadata['RADIOMETRIC_RESCALING'].get(
            'REFLECTANCE_ADD_BAND_{}'.format(band))
        sun_elev = metadata['IMAGE_ATTRIBUTES']['SUN_ELEVATION']

        with rasterio.open('{}_B{}.TIF'.format(address, band)) as src:
            arr = src.read(indexes=1,
                           out_shape=(height, width)).astype(src.profile['dtype'])
            arr = 10000 * reflectance.reflectance(arr, multi_reflect, add_reflect,
                                                  sun_elev, src_nodata=0)

    return np.percentile(arr[arr > 0], (pmin, pmax)).astype(np.int).tolist()
Exemple #6
0
def dn_to_toa(arr: numpy.ndarray, band: str, metadata: Dict) -> numpy.ndarray:
    """Convert DN to TOA or Temp.

    Args:
        arr (numpy.ndarray): Digital Number array values.
        band (str): Landsat 8 band's name.
        metadata (str): Landsat MTL metadata.

    Returns:
        numpy.ndarray: DN coverted to TOA or Temperature.

    """
    if band in ["B1", "B2", "B3", "B4", "B5", "B6", "B7", "B8", "B9"]:  # OLI
        multi_reflect = metadata["RADIOMETRIC_RESCALING"].get(
            f"REFLECTANCE_MULT_BAND_{band[1:]}")
        add_reflect = metadata["RADIOMETRIC_RESCALING"].get(
            f"REFLECTANCE_ADD_BAND_{band[1:]}")
        sun_elev = metadata["IMAGE_ATTRIBUTES"]["SUN_ELEVATION"]

        arr = 10000 * reflectance.reflectance(
            arr, multi_reflect, add_reflect, sun_elev, src_nodata=0)
        arr = arr.astype("uint16")

    elif band in ["B10", "B11"]:  # TIRS
        multi_rad = metadata["RADIOMETRIC_RESCALING"].get(
            f"RADIANCE_MULT_BAND_{band[1:]}")
        add_rad = metadata["RADIOMETRIC_RESCALING"].get(
            f"RADIANCE_ADD_BAND_{band[1:]}")
        k1 = metadata["TIRS_THERMAL_CONSTANTS"].get(
            f"K1_CONSTANT_BAND_{band[1:]}")
        k2 = metadata["TIRS_THERMAL_CONSTANTS"].get(
            f"K2_CONSTANT_BAND_{band[1:]}")

        arr = brightness_temp.brightness_temp(arr, multi_rad, add_rad, k1, k2)

    return arr
Exemple #7
0
def test_brightness_temp_wrong_shape(img, ML, AL, K1, K2):
    with pytest.raises(ValueError):
        brightness_temp.brightness_temp(img, ML, AL, K1, K2, src_nodata=0)
    def dn2toa(self, platform, mtl_file=None, wavelengths=None):
        """This method converts digital numbers to top of atmosphere reflectance, like described here:
        https://www.usgs.gov/land-resources/nli/landsat/using-usgs-landsat-level-1-data-product

        :param platform: image platform, possible Platform.Landsat[5, 7, 8] or Platform.Sentinel2 (<enum 'Platform'>).
        :param mtl_file: path to Landsat MTL file that holds the band specific rescale factors (str).
        :param wavelengths: like ["Blue", "Green", "Red", "NIR", "SWIR1", "TIRS", "SWIR2"] for Landsat-5 (list of str).
        """
        if platform in [
                Platform.Landsat5,
                Platform.Landsat7,
                Platform.Landsat8,
        ]:
            if mtl_file is None:
                raise AttributeError(
                    f"'mtl_file' has to be set if platform is {platform}.")
            else:
                # get rescale factors from mtl file
                mtl = toa_utils._load_mtl(
                    str(mtl_file))  # no obvious reason not to call this
                metadata = mtl["L1_METADATA_FILE"]
                sun_elevation = metadata["IMAGE_ATTRIBUTES"]["SUN_ELEVATION"]
                toa = []

                for idx, b in enumerate(
                        self._lookup_bands(platform, wavelengths)):
                    if (platform == Platform.Landsat8 and b
                            in ["10", "11"]) or (platform != Platform.Landsat8
                                                 and b.startswith("6")):
                        if platform == Platform.Landsat8:
                            thermal_conversion_constant1 = metadata[
                                "TIRS_THERMAL_CONSTANTS"][
                                    f"K1_CONSTANT_BAND_{b}"]
                            thermal_conversion_constant2 = metadata[
                                "TIRS_THERMAL_CONSTANTS"][
                                    f"K2_CONSTANT_BAND_{b}"]
                        else:
                            thermal_conversion_constant1 = metadata[
                                "THERMAL_CONSTANTS"][f"K1_CONSTANT_BAND_{b}"]
                            thermal_conversion_constant2 = metadata[
                                "THERMAL_CONSTANTS"][f"K2_CONSTANT_BAND_{b}"]
                        multiplicative_rescaling_factors = metadata[
                            "RADIOMETRIC_RESCALING"][f"RADIANCE_MULT_BAND_{b}"]
                        additive_rescaling_factors = metadata[
                            "RADIOMETRIC_RESCALING"][f"RADIANCE_ADD_BAND_{b}"]

                        # rescale thermal bands
                        toa.append(
                            brightness_temp.brightness_temp(
                                self.__arr[idx, :, :],
                                ML=multiplicative_rescaling_factors,
                                AL=additive_rescaling_factors,
                                K1=thermal_conversion_constant1,
                                K2=thermal_conversion_constant2,
                            ))
                        continue

                    # rescale reflectance bands
                    multiplicative_rescaling_factors = metadata[
                        "RADIOMETRIC_RESCALING"][f"REFLECTANCE_MULT_BAND_{b}"]
                    additive_rescaling_factors = metadata[
                        "RADIOMETRIC_RESCALING"][f"REFLECTANCE_ADD_BAND_{b}"]
                    toa.append(
                        reflectance.reflectance(
                            self.__arr[idx, :, :],
                            MR=multiplicative_rescaling_factors,
                            AR=additive_rescaling_factors,
                            E=sun_elevation,
                        ))

                self.__arr = np.array(np.stack(toa, axis=0))
        elif platform == Platform.Sentinel2:
            self.__arr = self.__arr.astype(np.float32) / 10000.0
        else:
            raise AttributeError(
                f"Cannot convert dn2toa. Platform {platform} not supported [Landsat-5, Landsat-7, Landsat-8, "
                f"Sentinel-2]. ")

        self.__update_dataset(self.dataset.crs,
                              self.dataset.transform,
                              nodata=self.dataset.nodata)
Exemple #9
0
def tile(sceneid, tile_x, tile_y, tile_z, rgb=(4, 3, 2), tilesize=256, pan=False):
    """Create mercator tile from Landsat-8 data.

    Attributes
    ----------

    sceneid : str
        Landsat sceneid. For scenes after May 2017,
        sceneid have to be LANDSAT_PRODUCT_ID.
    tile_x : int
        Mercator tile X index.
    tile_y : int
        Mercator tile Y index.
    tile_z : int
        Mercator tile ZOOM level.
    rgb : tuple, int, optional (default: (4, 3, 2))
        Bands index for the RGB combination.
    tilesize : int, optional (default: 256)
        Output image size.
    pan : boolean, optional (default: False)
        If True, apply pan-sharpening.

    Returns
    -------
    data : numpy ndarray
    mask: numpy array
    """

    if not isinstance(rgb, tuple):
        rgb = tuple((rgb, ))

    scene_params = utils.landsat_parse_scene_id(sceneid)
    meta_data = utils.landsat_get_mtl(sceneid).get('L1_METADATA_FILE')
    landsat_address = '{}/{}'.format(LANDSAT_BUCKET, scene_params['key'])

    wgs_bounds = toa_utils._get_bounds_from_metadata(
        meta_data['PRODUCT_METADATA'])

    if not utils.tile_exists(wgs_bounds, tile_z, tile_x, tile_y):
        raise TileOutsideBounds(
            'Tile {}/{}/{} is outside image bounds'.format(
                tile_z, tile_x, tile_y))

    mercator_tile = mercantile.Tile(x=tile_x, y=tile_y, z=tile_z)
    tile_bounds = mercantile.xy_bounds(mercator_tile)

    ms_tile_size = int(tilesize / 2) if pan else tilesize
    addresses = ['{}_B{}.TIF'.format(landsat_address, band) for band in rgb]

    _tiler = partial(utils.tile_band_worker, bounds=tile_bounds, tilesize=ms_tile_size, nodata=0)
    with futures.ThreadPoolExecutor(max_workers=3) as executor:
        data, masks = zip(*list(executor.map(_tiler, addresses)))
        data = np.concatenate(data)
        mask = np.all(masks, axis=0).astype(np.uint8) * 255

        if pan:
            pan_address = '{}_B8.TIF'.format(landsat_address)
            matrix_pan, mask = utils.tile_band_worker(pan_address, tile_bounds, tilesize, nodata=0)

            w, s, e, n = tile_bounds
            pan_transform = transform.from_bounds(w, s, e, n, tilesize, tilesize)
            vis_transform = pan_transform * Affine.scale(2.)
            data = pansharpen(data, vis_transform, matrix_pan, pan_transform,
                              np.int16, 'EPSG:3857', 'EPSG:3857', 0.2,
                              method='Brovey', src_nodata=0)

        sun_elev = meta_data['IMAGE_ATTRIBUTES']['SUN_ELEVATION']

        for bdx, band in enumerate(rgb):
            if int(band) > 9:  # TIRS
                multi_rad = meta_data['RADIOMETRIC_RESCALING'].get(
                    'RADIANCE_MULT_BAND_{}'.format(band))

                add_rad = meta_data['RADIOMETRIC_RESCALING'].get(
                    'RADIANCE_ADD_BAND_{}'.format(band))

                k1 = meta_data['TIRS_THERMAL_CONSTANTS'].get(
                    'K1_CONSTANT_BAND_{}'.format(band))

                k2 = meta_data['TIRS_THERMAL_CONSTANTS'].get(
                    'K2_CONSTANT_BAND_{}'.format(band))

                data[bdx] = brightness_temp.brightness_temp(
                    data[bdx], multi_rad, add_rad, k1, k2)

            else:
                multi_reflect = meta_data['RADIOMETRIC_RESCALING'].get(
                    'REFLECTANCE_MULT_BAND_{}'.format(band))

                add_reflect = meta_data['RADIOMETRIC_RESCALING'].get(
                    'REFLECTANCE_ADD_BAND_{}'.format(band))

                data[bdx] = 10000 * reflectance.reflectance(
                    data[bdx], multi_reflect, add_reflect, sun_elev)

        return data, mask
Exemple #10
0
def tile(sceneid,
         tile_x,
         tile_y,
         tile_z,
         bands=("4", "3", "2"),
         tilesize=256,
         pan=False,
         **kwargs):
    """
    Create mercator tile from Landsat-8 data.

    Attributes
    ----------
    sceneid : str
        Landsat sceneid. For scenes after May 2017,
        sceneid have to be LANDSAT_PRODUCT_ID.
    tile_x : int
        Mercator tile X index.
    tile_y : int
        Mercator tile Y index.
    tile_z : int
        Mercator tile ZOOM level.
    bands : tuple, str, optional (default: ("4", "3", "2"))
        Bands index for the RGB combination.
    tilesize : int, optional (default: 256)
        Output image size.
    pan : boolean, optional (default: False)
        If True, apply pan-sharpening.
    kwargs: dict, optional
        These will be passed to the 'rio_tiler.utils._tile_read' function.

    Returns
    -------
    data : numpy ndarray
    mask: numpy array

    """
    if not isinstance(bands, tuple):
        bands = tuple((bands, ))

    for band in bands:
        if band not in LANDSAT_BANDS:
            raise InvalidBandName(
                "{} is not a valid Landsat band name".format(band))

    scene_params = _landsat_parse_scene_id(sceneid)
    meta_data = _landsat_get_mtl(sceneid).get("L1_METADATA_FILE")
    landsat_address = "{}/{}".format(LANDSAT_BUCKET, scene_params["key"])

    wgs_bounds = toa_utils._get_bounds_from_metadata(
        meta_data["PRODUCT_METADATA"])

    if not utils.tile_exists(wgs_bounds, tile_z, tile_x, tile_y):
        raise TileOutsideBounds("Tile {}/{}/{} is outside image bounds".format(
            tile_z, tile_x, tile_y))

    mercator_tile = mercantile.Tile(x=tile_x, y=tile_y, z=tile_z)
    tile_bounds = mercantile.xy_bounds(mercator_tile)

    def _tiler(band):
        address = "{}_B{}.TIF".format(landsat_address, band)
        if band == "QA":
            nodata = 1
        else:
            nodata = 0

        return utils.tile_read(address,
                               bounds=tile_bounds,
                               tilesize=tilesize,
                               nodata=nodata,
                               **kwargs)

    with futures.ThreadPoolExecutor(max_workers=MAX_THREADS) as executor:
        data, masks = zip(*list(executor.map(_tiler, bands)))
        data = np.concatenate(data)
        mask = np.all(masks, axis=0).astype(np.uint8) * 255

        if pan:
            pan_address = "{}_B8.TIF".format(landsat_address)
            matrix_pan, mask = utils.tile_read(pan_address,
                                               tile_bounds,
                                               tilesize,
                                               nodata=0)
            data = utils.pansharpening_brovey(data, matrix_pan, 0.2,
                                              matrix_pan.dtype)

        sun_elev = meta_data["IMAGE_ATTRIBUTES"]["SUN_ELEVATION"]

        for bdx, band in enumerate(bands):
            if band in ["1", "2", "3", "4", "5", "6", "7", "8", "9"]:  # OLI
                multi_reflect = meta_data["RADIOMETRIC_RESCALING"].get(
                    "REFLECTANCE_MULT_BAND_{}".format(band))

                add_reflect = meta_data["RADIOMETRIC_RESCALING"].get(
                    "REFLECTANCE_ADD_BAND_{}".format(band))

                data[bdx] = 10000 * reflectance.reflectance(
                    data[bdx], multi_reflect, add_reflect, sun_elev)

            elif band in ["10", "11"]:  # TIRS
                multi_rad = meta_data["RADIOMETRIC_RESCALING"].get(
                    "RADIANCE_MULT_BAND_{}".format(band))

                add_rad = meta_data["RADIOMETRIC_RESCALING"].get(
                    "RADIANCE_ADD_BAND_{}".format(band))

                k1 = meta_data["TIRS_THERMAL_CONSTANTS"].get(
                    "K1_CONSTANT_BAND_{}".format(band))

                k2 = meta_data["TIRS_THERMAL_CONSTANTS"].get(
                    "K2_CONSTANT_BAND_{}".format(band))

                data[bdx] = brightness_temp.brightness_temp(
                    data[bdx], multi_rad, add_rad, k1, k2)

        return data, mask
Exemple #11
0
def _landsat_stats(
    band,
    address_prefix,
    metadata,
    overview_level=None,
    max_size=1024,
    percentiles=(2, 98),
    dst_crs=CRS({"init": "EPSG:4326"}),
    histogram_bins=10,
    histogram_range=None,
):
    """
    Retrieve landsat dataset statistics.

    Attributes
    ----------
    band : str
        Landsat band number
    address_prefix : str
        A Landsat AWS S3 dataset prefix.
    metadata : dict
        Landsat metadata
    overview_level : int, optional
        Overview (decimation) level to fetch.
    max_size: int, optional
        Maximum size of dataset to retrieve
        (will be used to calculate the overview level to fetch).
    percentiles : tulple, optional
        Percentile or sequence of percentiles to compute,
        which must be between 0 and 100 inclusive (default: (2, 98)).
    dst_crs: CRS or dict
        Target coordinate reference system (default: EPSG:4326).
    histogram_bins: int, optional
        Defines the number of equal-width histogram bins (default: 10).
    histogram_range: tuple or list, optional
        The lower and upper range of the bins. If not provided, range is simply
        the min and max of the array.

    Returns
    -------
    out : dict
        (percentiles), min, max, stdev, histogram for each band,
        e.g.
        {
            "4": {
                'pc': [15, 121],
                'min': 1,
                'max': 162,
                'std': 27.22067722127997,
                'histogram': [
                    [102934, 135489, 20981, 13548, 11406, 8799, 7351, 5622, 2985, 662]
                    [1., 17.1, 33.2, 49.3, 65.4, 81.5, 97.6, 113.7, 129.8, 145.9, 162.]
                ]
            }
        }
    """
    src_path = "{}_B{}.TIF".format(address_prefix, band)
    with rasterio.open(src_path) as src:
        levels = src.overviews(1)
        width = src.width
        height = src.height
        bounds = transform_bounds(src.crs,
                                  dst_crs,
                                  *src.bounds,
                                  densify_pts=21)

        if len(levels):
            if overview_level:
                decim = levels[overview_level]
            else:
                # determine which zoom level to read
                for ii, decim in enumerate(levels):
                    if max(width // decim, height // decim) < max_size:
                        break
        else:
            decim = 1
            warnings.warn("Dataset has no overviews, reading the full dataset",
                          NoOverviewWarning)

        out_shape = (height // decim, width // decim)

        if band == "QA":
            nodata = 1
        else:
            nodata = 0

        vrt_params = dict(nodata=nodata,
                          add_alpha=False,
                          src_nodata=nodata,
                          init_dest_nodata=False)
        with WarpedVRT(src, **vrt_params) as vrt:
            arr = vrt.read(out_shape=out_shape, indexes=[1], masked=True)

    if band in ["1", "2", "3", "4", "5", "6", "7", "8", "9"]:  # OLI
        multi_reflect = metadata["RADIOMETRIC_RESCALING"].get(
            "REFLECTANCE_MULT_BAND_{}".format(band))
        add_reflect = metadata["RADIOMETRIC_RESCALING"].get(
            "REFLECTANCE_ADD_BAND_{}".format(band))
        sun_elev = metadata["IMAGE_ATTRIBUTES"]["SUN_ELEVATION"]

        arr = 10000 * reflectance.reflectance(
            arr, multi_reflect, add_reflect, sun_elev, src_nodata=0)
    elif band in ["10", "11"]:  # TIRS
        multi_rad = metadata["RADIOMETRIC_RESCALING"].get(
            "RADIANCE_MULT_BAND_{}".format(band))
        add_rad = metadata["RADIOMETRIC_RESCALING"].get(
            "RADIANCE_ADD_BAND_{}".format(band))
        k1 = metadata["TIRS_THERMAL_CONSTANTS"].get(
            "K1_CONSTANT_BAND_{}".format(band))
        k2 = metadata["TIRS_THERMAL_CONSTANTS"].get(
            "K2_CONSTANT_BAND_{}".format(band))

        arr = brightness_temp.brightness_temp(arr, multi_rad, add_rad, k1, k2)

    params = {}
    if histogram_bins:
        params.update(dict(bins=histogram_bins))
    if histogram_range:
        params.update(dict(range=histogram_range))

    stats = {band: utils._stats(arr, percentiles=percentiles, **params)}

    return {
        "bounds": {
            "value": bounds,
            "crs":
            dst_crs.to_string() if isinstance(dst_crs, CRS) else dst_crs,
        },
        "statistics": stats,
    }
Exemple #12
0
def tile(sceneid,
         tile_x,
         tile_y,
         tile_z,
         bands=("4", "3", "2"),
         tilesize=256,
         pan=False):
    """
    Create mercator tile from Landsat-8 data.

    Attributes
    ----------
    sceneid : str
        Landsat sceneid. For scenes after May 2017,
        sceneid have to be LANDSAT_PRODUCT_ID.
    tile_x : int
        Mercator tile X index.
    tile_y : int
        Mercator tile Y index.
    tile_z : int
        Mercator tile ZOOM level.
    bands : tuple, str, optional (default: ("4", "3", "2"))
        Bands index for the RGB combination.
    tilesize : int, optional (default: 256)
        Output image size.
    pan : boolean, optional (default: False)
        If True, apply pan-sharpening.

    Returns
    -------
    data : numpy ndarray
    mask: numpy array

    """
    if not isinstance(bands, tuple):
        bands = tuple((bands, ))

    for band in bands:
        if band not in LANDSAT_BANDS:
            raise InvalidBandName(
                "{} is not a valid Landsat band name".format(band))

    scene_params = _landsat_parse_scene_id(sceneid)
    meta_data = _landsat_get_mtl(sceneid).get("L1_METADATA_FILE")
    landsat_address = "{}/{}".format(LANDSAT_BUCKET, scene_params["key"])

    wgs_bounds = toa_utils._get_bounds_from_metadata(
        meta_data["PRODUCT_METADATA"])

    if not utils.tile_exists(wgs_bounds, tile_z, tile_x, tile_y):
        raise TileOutsideBounds("Tile {}/{}/{} is outside image bounds".format(
            tile_z, tile_x, tile_y))

    mercator_tile = mercantile.Tile(x=tile_x, y=tile_y, z=tile_z)
    tile_bounds = mercantile.xy_bounds(mercator_tile)

    ms_tile_size = int(tilesize / 2) if pan else tilesize
    addresses = ["{}_B{}.TIF".format(landsat_address, band) for band in bands]

    _tiler = partial(utils.tile_read,
                     bounds=tile_bounds,
                     tilesize=ms_tile_size,
                     nodata=0)
    with futures.ThreadPoolExecutor(max_workers=MAX_THREADS) as executor:
        data, masks = zip(*list(executor.map(_tiler, addresses)))
        data = np.concatenate(data)
        mask = np.all(masks, axis=0).astype(np.uint8) * 255

        if pan:
            pan_address = "{}_B8.TIF".format(landsat_address)
            matrix_pan, mask = utils.tile_read(pan_address,
                                               tile_bounds,
                                               tilesize,
                                               nodata=0)

            w, s, e, n = tile_bounds
            pan_transform = transform.from_bounds(w, s, e, n, tilesize,
                                                  tilesize)
            vis_transform = pan_transform * Affine.scale(2.0)
            data = pansharpen(
                data,
                vis_transform,
                matrix_pan,
                pan_transform,
                np.int16,
                "EPSG:3857",
                "EPSG:3857",
                0.2,
                method="Brovey",
                src_nodata=0,
            )

        sun_elev = meta_data["IMAGE_ATTRIBUTES"]["SUN_ELEVATION"]

        for bdx, band in enumerate(bands):
            if int(band) > 9:  # TIRS
                multi_rad = meta_data["RADIOMETRIC_RESCALING"].get(
                    "RADIANCE_MULT_BAND_{}".format(band))

                add_rad = meta_data["RADIOMETRIC_RESCALING"].get(
                    "RADIANCE_ADD_BAND_{}".format(band))

                k1 = meta_data["TIRS_THERMAL_CONSTANTS"].get(
                    "K1_CONSTANT_BAND_{}".format(band))

                k2 = meta_data["TIRS_THERMAL_CONSTANTS"].get(
                    "K2_CONSTANT_BAND_{}".format(band))

                data[bdx] = brightness_temp.brightness_temp(
                    data[bdx], multi_rad, add_rad, k1, k2)

            else:
                multi_reflect = meta_data["RADIOMETRIC_RESCALING"].get(
                    "REFLECTANCE_MULT_BAND_{}".format(band))

                add_reflect = meta_data["RADIOMETRIC_RESCALING"].get(
                    "REFLECTANCE_ADD_BAND_{}".format(band))

                data[bdx] = 10000 * reflectance.reflectance(
                    data[bdx], multi_reflect, add_reflect, sun_elev)

        return data, mask
def landsat8_tile(sceneid,
                  tile_x,
                  tile_y,
                  tile_z,
                  bands=("4", "3", "2"),
                  tilesize=256,
                  pan=False,
                  percents="",
                  **kwargs):
    """
    Create mercator tile from Landsat-8 data.

    Attributes
    ----------
    sceneid : str
        Landsat sceneid. For scenes after May 2017,
        sceneid have to be LANDSAT_PRODUCT_ID.
    tile_x : int
        Mercator tile X index.
    tile_y : int
        Mercator tile Y index.
    tile_z : int
        Mercator tile ZOOM level.
    bands : tuple, str, optional (default: ("4", "3", "2"))
        Bands index for the RGB combination.
    tilesize : int, optional (default: 256)
        Output image size.
    pan : boolean, optional (default: False)
        If True, apply pan-sharpening.
    kwargs: dict, optional
        These will be passed to the 'rio_tiler.utils._tile_read' function.

    Returns
    -------
    data : numpy ndarray
    mask: numpy array

    """
    if not isinstance(bands, tuple):
        bands = tuple((bands, ))

    for band in bands:
        if band not in LANDSAT_BANDS:
            raise InvalidBandName(
                "{} is not a valid Landsat band name".format(band))

    scene_params = landsat8._landsat_parse_scene_id(sceneid)
    meta_data = landsat8._landsat_get_mtl(sceneid).get("L1_METADATA_FILE")
    landsat_address = "{}/{}".format(LANDSAT_BUCKET, scene_params["key"])

    wgs_bounds = toa_utils._get_bounds_from_metadata(
        meta_data["PRODUCT_METADATA"])

    addresses = ["{}_B{}.TIF".format(landsat_address, band) for band in bands]

    values = []
    percents = percents.split(',')
    i = 0
    for address in addresses:
        with rasterio.open(address) as src:
            if int(percents[i]) != 0 and int(percents[i + 1]) != 100:
                overviews = src.overviews(1)
                if len(overviews) > 0:
                    d = src.read(
                        out_shape=(1,
                                   int(src.height /
                                       overviews[len(overviews) - 1]),
                                   int(src.width /
                                       overviews[len(overviews) - 1])))
                else:
                    d = src.read()

                dflatten = numpy.array(d.flatten())
                p_start, p_end = numpy.percentile(dflatten[dflatten > 0],
                                                  (int(percents[i]),
                                                   (int(percents[i + 1]))))
                values.append([p_start, p_end])
            else:
                values.append([None, None])
            i += 2

    if not utils.tile_exists(wgs_bounds, tile_z, tile_x, tile_y):
        # raise TileOutsideBounds(
        #     "Tile {}/{}/{} is outside image bounds".format(tile_z, tile_x, tile_y)
        # )
        return None, None

    mercator_tile = mercantile.Tile(x=tile_x, y=tile_y, z=tile_z)
    tile_bounds = mercantile.xy_bounds(mercator_tile)

    def _tiler(band):
        address = "{}_B{}.TIF".format(landsat_address, band)
        if band == "QA":
            nodata = 1
        else:
            nodata = 0

        return utils.tile_read(address,
                               bounds=tile_bounds,
                               tilesize=tilesize,
                               nodata=nodata,
                               **kwargs)

    with futures.ThreadPoolExecutor(max_workers=MAX_THREADS) as executor:
        data, masks = zip(*list(executor.map(_tiler, bands)))
        mask = numpy.all(masks, axis=0).astype(numpy.uint8) * 255

    new_data = list(data)
    has_modification = False
    for ds in range(0, len(new_data)):
        if values[ds][0] is not None and values[ds][1] is not None:
            has_modification = True
            new_data[ds] = rescale_intensity(new_data[ds],
                                             in_range=(values[ds][0],
                                                       values[ds][1]),
                                             out_range=(0, 255))
    if has_modification == True:
        data = numpy.array(new_data).astype(numpy.uint8)

    data = numpy.concatenate(data)

    if pan:
        pan_address = "{}_B8.TIF".format(landsat_address)
        matrix_pan, mask = utils.tile_read(pan_address,
                                           tile_bounds,
                                           tilesize,
                                           nodata=0)
        data = utils.pansharpening_brovey(data, matrix_pan, 0.2,
                                          matrix_pan.dtype)

    sun_elev = meta_data["IMAGE_ATTRIBUTES"]["SUN_ELEVATION"]

    for bdx, band in enumerate(bands):
        if band in ["1", "2", "3", "4", "5", "6", "7", "8", "9"]:  # OLI
            multi_reflect = meta_data["RADIOMETRIC_RESCALING"].get(
                "REFLECTANCE_MULT_BAND_{}".format(band))

            add_reflect = meta_data["RADIOMETRIC_RESCALING"].get(
                "REFLECTANCE_ADD_BAND_{}".format(band))

            data[bdx] = 10000 * reflectance.reflectance(
                data[bdx], multi_reflect, add_reflect, sun_elev)

        elif band in ["10", "11"]:  # TIRS
            multi_rad = meta_data["RADIOMETRIC_RESCALING"].get(
                "RADIANCE_MULT_BAND_{}".format(band))

            add_rad = meta_data["RADIOMETRIC_RESCALING"].get(
                "RADIANCE_ADD_BAND_{}".format(band))

            k1 = meta_data["TIRS_THERMAL_CONSTANTS"].get(
                "K1_CONSTANT_BAND_{}".format(band))

            k2 = meta_data["TIRS_THERMAL_CONSTANTS"].get(
                "K2_CONSTANT_BAND_{}".format(band))

            data[bdx] = brightness_temp.brightness_temp(
                data[bdx], multi_rad, add_rad, k1, k2)

    return data, mask