Exemple #1
0
 def test_one_of_weight(self):
     for weight in [[1.0, 0.0], torch.tensor([1.0, 0.0])]:
         with self.subTest(weight=weight):
             trafo0 = Mirror((0, ))
             trafo1 = Mirror((1, ))
             comp = OneOf(trafo0, trafo1, weights=weight)
             out = comp(**self.batch)
             expected_out = trafo0(**self.batch)
             self.assertTrue(out["data"].allclose(expected_out["data"]))
Exemple #2
0
    def test_dropout_compose(self):
        compose = DropoutCompose(self.transforms[0], dropout=0.0)
        outp = compose(**self.batch)
        expected = Mirror(dims=(0, ), prob=1.)(**self.batch)
        self.assertTrue((expected["data"] == outp["data"]).all())

        compose = DropoutCompose(self.transforms[0], dropout=1.0)
        outp = compose(**self.batch)
        self.assertTrue((self.batch["data"] == outp["data"]).all())
Exemple #3
0
    def test_dropout_compose(self):
        compose = DropoutCompose(self.transforms[0], dropout=0.0)
        self.assertEqual(len(compose.transform_order), 1)
        outp = compose(**self.batch)
        expected = Mirror(dims=(0, ))(**self.batch)
        self.assertTrue((expected["data"] == outp["data"]).all())

        compose = DropoutCompose(self.transforms, dropout=1.0)
        outp = compose(**self.batch)
        self.assertEqual(len(compose.transform_order), 2)
        self.assertTrue((self.batch["data"] == outp["data"]).all())
Exemple #4
0
    def test_compose_shuffle(self):
        compose = Compose([Mirror(dims=(0, ))] * 10, shuffle=True)

        random.seed(0)
        outp = compose(**self.batch)

        order = list(range(len(compose.transforms)))
        expected_order = copy.deepcopy(order)
        random.seed(0)
        random.shuffle(expected_order)

        self.assertEqual(compose.transform_order, expected_order)
        self.assertNotEqual(expected_order, order)
Exemple #5
0
 def test_compose_single(self):
     single_compose = Compose(self.transforms[0])
     outp = single_compose(**self.batch)
     expected = Mirror(dims=(0, ))(**self.batch)
     self.assertTrue((expected["data"] == outp["data"]).all())
Exemple #6
0
 def setUp(self) -> None:
     self.batch = {"data": torch.rand(1, 1, 10, 10)}
     self.transforms = [Mirror(dims=(0, )), Mirror(dims=(0, ))]
Exemple #7
0
 def test_one_of_weight_error(self):
     with self.assertRaises(ValueError):
         trafo = Mirror((0, ))
         comp = OneOf(trafo, trafo, weights=[0.33, 0.33, 0.33])
Exemple #8
0
 def test_one_of_no_weight(self):
     trafo = Mirror((0, ))
     comp = OneOf(trafo, trafo)
     out = comp(**self.batch)
     expected_out = trafo(**self.batch)
     self.assertTrue(out["data"].allclose(expected_out["data"]))