Exemple #1
0
def prepare_edge(edge_shapefile, building_shapefile):
    """Create edge graph with grouped building demands.
    """
    # load buildings and sum by type and nearest edge ID
    # 1. read shapefile to DataFrame (with special geometry column)
    # 2. group DataFrame by columns 'nearest' (ID of nearest edge) and 'type'
    #    (residential, commercial, industrial, other)
    # 3. sum by group and unstack, i.e. convert secondary index 'type' to columns
    buildings = pdshp.read_shp(building_shapefile)
    building_type_mapping = {
        'church': 'other',
        'farm': 'other',
        'hospital': 'residential',
        'hotel': 'commercial',
        'house': 'residential',
        'office': 'commercial',
        'retail': 'commercial',
        'school': 'commercial',
        'yes': 'other'
    }
    buildings.replace(to_replace={'type': building_type_mapping}, inplace=True)
    buildings_grouped = buildings.groupby(['nearest', 'type'])
    total_area = buildings_grouped.sum()['AREA'].unstack()

    # load edges (streets) and join with summed areas
    # 1. read shapefile to DataFrame (with geometry column)
    # 2. join DataFrame total_area on index (=ID)
    # 3. fill missing values with 0
    edge = pdshp.read_shp(edge_shapefile)
    edge = edge.set_index('Edge')
    edge = edge.join(total_area)
    edge = edge.fillna(0)
    return edge
Exemple #2
0
def prepare_edge(edge_shapefile, building_shapefile):
    """Create edge graph with grouped building demands.
    """
    # load buildings and sum by type and nearest edge ID
    # 1. read shapefile to DataFrame (with special geometry column)
    # 2. group DataFrame by columns 'nearest' (ID of nearest edge) and 'type'
    #    (residential, commercial, industrial, other)
    # 3. sum by group and unstack, i.e. convert secondary index 'type' to
    # columns
    buildings = geopandas.read_file(building_shapefile + '.shp')
    buildings = buildings.convert_objects(convert_numeric=True)
    building_type_mapping = {
        'basin': 'other', 'chapel': 'other', 'church': 'other',
        'farm_auxiliary': 'other', 'greenhouse': 'other',
        'school': 'public',
        'office': 'commercial', 'restaurant': 'commercial',
        'yes': 'residential', 'house': 'residential'}
    buildings.replace(to_replace={'type': building_type_mapping}, inplace=True)
    buildings = buildings.to_crs(epsg=32632)
    buildings['AREA'] = buildings.area
    buildings_grouped = buildings.groupby(['nearest', 'type'])
    total_area = buildings_grouped.sum()['AREA'].unstack()

    # load edges (streets) and join with summed areas
    # 1. read shapefile to DataFrame (with geometry column)
    # 2. join DataFrame total_area on index (=ID)
    # 3. fill missing values with 0
    edge = pdshp.read_shp(edge_shapefile)
    edge = edge.set_index('Edge')
    edge = edge.join(total_area)
    edge = edge.fillna(0)
    return edge
Exemple #3
0
def run_scenario(scenario, result_dir):
    # scenario name
    sce = scenario.__name__
    sce_nice_name = sce.replace('_', ' ').title()

    # prepare input data
    data = rivus.read_excel(data_spreadsheet)
    vertex = pdshp.read_shp(vertex_shapefile)
    edge = prepare_edge(edge_shapefile, building_shapefile)

    # apply scenario function to input data
    data, vertex, edge = scenario(data, vertex, edge)

    log_filename = os.path.join(result_dir, sce+'.log')

    # create & solve model
    prob = rivus.create_model(
        data, vertex, edge,
        peak_multiplier=lambda x:scale_peak_demand(x, peak_demand_prefactor))
    
    # scale peak demand according to pickled urbs findings
    #reduced_peak = scale_peak_demand(model, peak_demand_prefactor)
    #model.peak = reduced_peak
    
    if PYOMO3:
        prob = prob.create()
    optim = SolverFactory('glpk')
    optim = setup_solver(optim, logfile=log_filename)
    result = optim.solve(prob, tee=True)
    if PYOMO3:
        prob.load(result)

    # report
    rivus.save(prob, os.path.join(result_dir, sce+'.pgz'))
    rivus.report(prob, os.path.join(result_dir, sce+'.xlsx'))
    
    # plot without buildings
    rivus.result_figures(prob, os.path.join(result_dir, sce))
    
    # plot with buildings and to_edge lines
    more_shapefiles = [{'name': 'to_edge',
                        'color': rivus.to_rgb(192, 192, 192),
                        'shapefile': to_edge_shapefile,
                        'zorder': 1,
                        'linewidth': 0.1}]
    rivus.result_figures(prob, os.path.join(result_dir, sce+'_bld'), 
                         buildings=(building_shapefile, False),
                         shapefiles=more_shapefiles)
    return prob
Exemple #4
0
def run_scenario(scenario):
    # scenario name
    sce = scenario.__name__
    sce_nice_name = sce.replace('_', ' ').title()

    # prepare input data
    data = rivus.read_excel(data_spreadsheet)
    vertex = pdshp.read_shp(vertex_shapefile)
    edge = prepare_edge(edge_shapefile, building_shapefile)

    # apply scenario function to input data
    data, vertex, edge = scenario(data, vertex, edge)

    # create & solve model
    prob = rivus.create_model(data, vertex, edge)
    if PYOMO3:
        prob = prob.create()  # no longer needed in Pyomo 4+
    optim = SolverFactory('gurobi')
    optim = setup_solver(optim)
    result = optim.solve(prob, tee=True)
    if PYOMO3:
        prob.load(result)  # no longer needed in Pyomo 4+

    # create result directory if not existent
    result_dir = os.path.join('result', os.path.basename(base_directory))
    if not os.path.exists(result_dir):
        os.makedirs(result_dir)

    # report
    rivus.report(prob, os.path.join(result_dir, 'report.xlsx'))

    # plots
    for com, plot_type in [('Elec', 'caps'), ('Heat', 'caps'), ('Gas', 'caps'),
                           ('Elec', 'peak'), ('Heat', 'peak')]:

        # two plot variants
        for plot_annotations in [False, True]:
            # create plot
            fig = rivus.plot(prob,
                             com,
                             mapscale=False,
                             tick_labels=False,
                             plot_demand=(plot_type == 'peak'),
                             annotations=plot_annotations)
            plt.title('')

            # save to file
            for ext, transp in [('png', True), ('png', False), ('pdf', True)]:
                transp_str = ('-transp' if transp and ext != 'pdf' else '')
                annote_str = ('-annote' if plot_annotations else '')

                # determine figure filename from scenario name, plot type,
                # commodity, transparency, annotations and extension
                fig_filename = '{}-{}-{}{}{}.{}'.format(
                    sce, plot_type, com, transp_str, annote_str, ext)
                fig_filename = os.path.join(result_dir, fig_filename)
                fig.savefig(fig_filename,
                            dpi=300,
                            bbox_inches='tight',
                            transparent=transp)

    return prob
Exemple #5
0
        # reference with list of options
        # execute 'glpsol --help'
        optim.set_options("tmlim=600")
        optim.set_options("mipgap=2e-2")
    else:
        print("Warning from setup_solver: no options set for solver "
              "'{}'!".format(optim.name))
    return optim


# load buildings and sum by type and nearest edge ID
# 1. read shapefile to DataFrame (with special geometry column)
# 2. group DataFrame by columns 'nearest' (ID of nearest edge) and 'type'
#    (residential, commercial, industrial, other)
# 3. sum by group and unstack, i.e. convert secondary index 'type' to columns
buildings = pdshp.read_shp(building_shapefile)
building_type_mapping = {
    'church': 'other',
    'farm': 'other',
    'hospital': 'residential',
    'hotel': 'commercial',
    'house': 'residential',
    'office': 'commercial',
    'retail': 'commercial',
    'school': 'commercial',
    'yes': 'other',
}
buildings.replace(to_replace={'type': building_type_mapping}, inplace=True)
buildings_grouped = buildings.groupby(['nearest', 'type'])
total_area = buildings_grouped.sum()['AREA'].unstack()