# Agent # ######### agent_params = PolicyGradientsAgentParameters() agent_params.algorithm.apply_gradients_every_x_episodes = 5 agent_params.algorithm.num_steps_between_gradient_updates = 20000 agent_params.network_wrappers['main'].learning_rate = 0.0005 agent_params.input_filter = MujocoInputFilter() agent_params.input_filter.add_reward_filter('rescale', RewardRescaleFilter(1 / 20.)) agent_params.input_filter.add_observation_filter( 'observation', 'normalize', ObservationNormalizationFilter()) ############### # Environment # ############### env_params = Mujoco() env_params.level = "InvertedPendulum-v2" vis_params = VisualizationParameters() vis_params.video_dump_methods = [ SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod() ] vis_params.dump_mp4 = False graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=vis_params)
agent_params.memory = EpisodicHindsightExperienceReplayParameters() agent_params.memory.hindsight_goal_selection_method = HindsightGoalSelectionMethod.Final agent_params.memory.hindsight_transitions_per_regular_transition = 1 agent_params.memory.goals_space = GoalsSpace( goal_name='state', reward_type=ReachingGoal(distance_from_goal_threshold=0, goal_reaching_reward=0, default_reward=-1), distance_metric=GoalsSpace.DistanceMetric.Euclidean) ############### # Environment # ############### env_params = Mujoco() env_params.level = 'rl_coach.environments.toy_problems.bit_flip:BitFlip' env_params.additional_simulator_parameters = { 'bit_length': bit_length, 'mean_zero': True } env_params.custom_reward_threshold = -bit_length + 1 vis_params = VisualizationParameters() # currently no tests for this preset as the max reward can be accidently achieved. will be fixed with trace based tests. ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.test = True
######### agent_params = NStepQAgentParameters() agent_params.algorithm.discount = 0.99 agent_params.network_wrappers['main'].learning_rate = 0.0001 agent_params.algorithm.num_steps_between_copying_online_weights_to_target = EnvironmentSteps( 100) agent_params.input_filter = MujocoInputFilter() agent_params.input_filter.add_reward_filter('rescale', RewardRescaleFilter(1 / 200.)) ############### # Environment # ############### env_params = Mujoco() env_params.level = 'CartPole-v0' vis_params = VisualizationParameters() vis_params.video_dump_methods = [ SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod() ] vis_params.dump_mp4 = False ######## # Test # ######## preset_validation_params = PresetValidationParameters() preset_validation_params.test = True preset_validation_params.min_reward_threshold = 150 preset_validation_params.max_episodes_to_achieve_reward = 200
schedule_params.heatup_steps = EnvironmentSteps(1000) ######### # Agent # ######### agent_params = NAFAgentParameters() agent_params.network_wrappers['main'].input_embedders_parameters['observation'].scheme = [Dense([200])] agent_params.network_wrappers['main'].middleware_parameters.scheme = [Dense([200])] agent_params.network_wrappers['main'].clip_gradients = 1000 agent_params.network_wrappers['main'].gradients_clipping_method = GradientClippingMethod.ClipByValue ############### # Environment # ############### env_params = Mujoco() env_params.level = SingleLevelSelection(mujoco_v2) vis_params = VisualizationParameters() vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()] vis_params.dump_mp4 = False # this preset is currently broken - no test ######## # Test # ######## preset_validation_params = PresetValidationParameters() # preset_validation_params.test = True # preset_validation_params.min_reward_threshold = 200
agent_params.network_wrappers[ 'main'].num_output_head_copies = num_output_head_copies agent_params.network_wrappers['main'].rescale_gradient_from_head_by_factor = [ 1.0 / num_output_head_copies ] * num_output_head_copies agent_params.exploration = UCBParameters() agent_params.exploration.bootstrapped_data_sharing_probability = 1.0 agent_params.exploration.architecture_num_q_heads = num_output_head_copies agent_params.exploration.epsilon_schedule = ConstantSchedule(0) agent_params.exploration.lamb = 10 agent_params.input_filter = NoInputFilter() agent_params.output_filter = NoOutputFilter() ############### # Environment # ############### env_params = Mujoco() env_params.level = 'rl_coach.environments.toy_problems.exploration_chain:ExplorationChain' env_params.additional_simulator_parameters = { 'chain_length': N, 'max_steps': N + 7 } vis_params = VisualizationParameters() graph_manager = BasicRLGraphManager(agent_params=agent_params, env_params=env_params, schedule_params=schedule_params, vis_params=vis_params)
'action': InputEmbedderParameters(scheme=EmbedderScheme.Empty), 'desired_goal': InputEmbedderParameters(scheme=EmbedderScheme.Empty)} bottom_critic.embedding_merger_type = EmbeddingMergerType.Concat bottom_critic.middleware_parameters.scheme = [Dense([64])] * 3 bottom_critic.learning_rate = 0.001 bottom_critic.batch_size = 4096 agents_params = [top_agent_params, bottom_agent_params] ############### # Environment # ############### time_limit = 1000 env_params = Mujoco() env_params.level = "rl_coach.environments.mujoco.pendulum_with_goals:PendulumWithGoals" env_params.additional_simulator_parameters = {"time_limit": time_limit, "random_goals_instead_of_standing_goal": False, "polar_coordinates": polar_coordinates, "goal_reaching_thresholds": distance_from_goal_threshold} env_params.frame_skip = 10 env_params.custom_reward_threshold = -time_limit + 1 vis_params = VisualizationParameters() vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST)] vis_params.dump_mp4 = False vis_params.native_rendering = False graph_manager = HACGraphManager(agents_params=agents_params, env_params=env_params, schedule_params=schedule_params, vis_params=vis_params, consecutive_steps_to_run_non_top_levels=EnvironmentSteps(40))
agent_params.input_filter = MujocoInputFilter() agent_params.input_filter.add_observation_filter('observation', 'clipping', ObservationClippingFilter(-200, 200)) agent_params.pre_network_filter = MujocoInputFilter() agent_params.pre_network_filter.add_observation_filter('observation', 'normalize_observation', ObservationNormalizationFilter(name='normalize_observation')) agent_params.pre_network_filter.add_observation_filter('achieved_goal', 'normalize_achieved_goal', ObservationNormalizationFilter(name='normalize_achieved_goal')) agent_params.pre_network_filter.add_observation_filter('desired_goal', 'normalize_desired_goal', ObservationNormalizationFilter(name='normalize_desired_goal')) ############### # Environment # ############### env_params = Mujoco() env_params.level = SingleLevelSelection(fetch_v1) env_params.custom_reward_threshold = -49 vis_params = VisualizationParameters() vis_params.video_dump_methods = [SelectedPhaseOnlyDumpMethod(RunPhase.TEST), MaxDumpMethod()] vis_params.dump_mp4 = False ######## # Test # ######## preset_validation_params = PresetValidationParameters() # preset_validation_params.test = True # preset_validation_params.min_reward_threshold = 200 # preset_validation_params.max_episodes_to_achieve_reward = 600 # preset_validation_params.reward_test_level = 'inverted_pendulum'