if args.save_azure_container is not None: account_name, account_key, container_name = \ args.save_azure_container.split(":") container = Container(account_name=account_name, account_key=account_key, container_name=container_name, maybe_create=True) if savedir is None: # Careful! This will not get cleaned up. savedir = tempfile.TemporaryDirectory().name else: container = None # Create and seed the env. env, monitored_env = make_env(args.env) if args.seed > 0: set_global_seeds(args.seed) env.unwrapped.seed(args.seed) # V: Save arguments, configure log dump path to savedir # if savedir: with open(os.path.join(savedir, 'args.json'), 'w') as f: json.dump(vars(args), f) logger.configure(dir=savedir) # log to savedir with U.make_session(4) as sess: # Create training graph and replay buffer act, train, update_target, debug, craft_adv = deepq.build_train( make_obs_ph=lambda name: U.Uint8Input(env.observation_space.shape, name=name), q_func=dueling_model if args.dueling else model, num_actions=env.action_space.n,
args.save_azure_container.split(":") container = Container( account_name=account_name, account_key=account_key, container_name=container_name, maybe_create=True ) if savedir is None: # Careful! This will not get cleaned up. savedir = tempfile.TemporaryDirectory().name else: container = None # Create and seed the env. env, monitored_env = make_env(args.env) if args.seed > 0: set_global_seeds(args.seed) env.unwrapped.seed(args.seed) # V: Save arguments, configure log dump path to savedir # if savedir: with open(os.path.join(savedir, 'args.json'), 'w') as f: json.dump(vars(args), f) logger.configure(dir=savedir) # log to savedir with U.make_session(4) as sess: # Create training graph and replay buffer act, train, update_target, debug, craft_adv = deepq.build_train( make_obs_ph=lambda name: U.Uint8Input(env.observation_space.shape, name=name), q_func=dueling_model if args.dueling else model, num_actions=env.action_space.n,