def _fit_agent_manager(agent, env="continuous_state", init_kwargs=None): """ Check that the agent is compatible with :class:`~rlberry.manager.AgentManager`. Parameters ---------- agent: rlberry agent module Agent class to test. env: tuple (env_ctor, env_kwargs) or str in {"continuous_state", "discrete_state"}, default="continuous_state" if tuple, env is the constructor and keywords of the env on which to test. if str in {"continuous_state", "discrete_state"}, we use a default Benchmark environment. init_kwargs : dict Arguments required by the agent's constructor. """ if init_kwargs is None: init_kwargs = {} train_env = _make_env(env) try: agent = AgentManager( agent, train_env, fit_budget=5, n_fit=1, seed=SEED, init_kwargs=init_kwargs ) agent.fit() except Exception as exc: raise RuntimeError("Agent not compatible with Agent Manager") from exc return agent
def check_bandit_agent(Agent, environment=BernoulliBandit, seed=42): """ Function used to check a bandit agent in rlberry on a Gaussian bandit problem. Parameters ---------- Agent: rlberry agent module Agent class that we want to test. environment: rlberry env module Environment (i.e bandit instance) on which to test the agent. seed : Seed sequence from which to spawn the random number generator. Returns ------- result : bool Whether the agent is a valid/compatible bandit agent. Examples -------- >>> from rlberry.agents.bandits import IndexAgent >>> from rlberry.utils import check_bandit_agent >>> import numpy as np >>> class UCBAgent(IndexAgent): >>> name = "UCB" >>> def __init__(self, env, **kwargs): >>> def index(r, t): >>> return np.mean(r) + np.sqrt(np.log(t**2) / (2 * len(r))) >>> IndexAgent.__init__(self, env, index, **kwargs) >>> check_bandit_agent(UCBAgent) True """ env_ctor = environment env_kwargs = {} agent1 = AgentManager(Agent, (env_ctor, env_kwargs), fit_budget=10, n_fit=1, seed=seed) agent2 = AgentManager(Agent, (env_ctor, env_kwargs), fit_budget=10, n_fit=1, seed=seed) agent1.fit() agent2.fit() env = env_ctor(**env_kwargs) state = env.reset() result = True for _ in range(5): # test reproducibility on 5 actions action1 = agent1.agent_handlers[0].policy(state) action2 = agent2.agent_handlers[0].policy(state) if action1 != action2: result = False return result
def test_recursive_vs_not_recursive(): env_ctor = NormalBandit env_kwargs = {} agent1 = AgentManager(UCBAgent, (env_ctor, env_kwargs), fit_budget=10, n_fit=1, seed=TEST_SEED) agent2 = AgentManager( RecursiveUCBAgent, (env_ctor, env_kwargs), fit_budget=10, n_fit=1, seed=TEST_SEED, ) agent1.fit() agent2.fit() env = env_ctor(**env_kwargs) state = env.reset() for _ in range(5): # test reproducibility on 5 actions action1 = agent1.agent_handlers[0].policy(state) action2 = agent2.agent_handlers[0].policy(state) assert action1 == action2
def test_agent_manager_partial_fit_and_tuple_env(): # Define train and evaluation envs train_env = ( GridWorld, None, ) # tuple (constructor, kwargs) must also work in AgentManager # Parameters params = {} eval_kwargs = dict(eval_horizon=10) # Run AgentManager stats = AgentManager( DummyAgent, train_env, init_kwargs=params, n_fit=4, fit_budget=5, eval_kwargs=eval_kwargs, seed=123, ) stats2 = AgentManager( DummyAgent, train_env, init_kwargs=params, n_fit=4, fit_budget=5, eval_kwargs=eval_kwargs, seed=123, ) # Run partial fit stats.fit(10) stats.fit(20) for agent in stats.agent_handlers: assert agent.total_budget == 30 # Run fit stats2.fit() # learning curves plot_writer_data([stats], tag="episode_rewards", show=False, preprocess_func=np.cumsum) # compare final policies evaluate_agents([stats], show=False) # delete some writers stats.set_writer(0, None) stats.set_writer(3, None) stats.clear_output_dir() stats2.clear_output_dir()
def _create_and_fit_agent_manager(output_dir, outdir_id_style): env_ctor = GridWorld env_kwargs = dict(nrows=2, ncols=2, reward_at={(1, 1): 0.1, (2, 2): 1.0}) manager = AgentManager( VIAgent, (env_ctor, env_kwargs), fit_budget=10, n_fit=3, output_dir=output_dir, outdir_id_style=outdir_id_style, ) manager.fit() manager.save() return manager
def test_jax_dqn(lambda_): if not _IMPORT_SUCCESSFUL: return env = (gym_make, dict(id="CartPole-v0")) params = dict( chunk_size=4, batch_size=128, target_update_interval=5, lambda_=lambda_ ) stats = AgentManager( DQNAgent, env, fit_budget=20, eval_env=env, init_kwargs=params, n_fit=1, parallelization="thread", ) stats.fit() stats.clear_output_dir()
def check_save_load(agent, env="continuous_state", init_kwargs=None): """ Check that the agent save a non-empty file and can load. Parameters ---------- agent: rlberry agent module Agent class to test. env: tuple (env_ctor, env_kwargs) or str in {"continuous_state", "discrete_state"}, default="continuous_state" if tuple, env is the constructor and keywords of the env on which to test. if str in {"continuous_state", "discrete_state"}, we use a default Benchmark environment. init_kwargs : dict Arguments required by the agent's constructor. """ if init_kwargs is None: init_kwargs = {} train_env = _make_env(env) env = train_env[0](**train_env[1]) with tempfile.TemporaryDirectory() as tmpdirname: agent = AgentManager( agent, train_env, fit_budget=5, n_fit=1, seed=SEED, init_kwargs=init_kwargs, output_dir=tmpdirname, ) agent.fit(3) assert ( os.path.getsize(str(agent.output_dir_) + "/agent_handlers/idx_0.pickle") > 1 ), "The saved file is empty." try: agent.load(str(agent.output_dir_) + "/agent_handlers/idx_0.pickle") except Exception: raise RuntimeError("Failed to load the agent file.")
def check_fit_additive(agent, env="continuous_state", init_kwargs=None): """ Check that fitting two times with 10 fit budget is the same as fitting one time with 20 fit budget. Parameters ---------- agent: rlberry agent module Agent class to test. env: tuple (env_ctor, env_kwargs) or str in ["continuous_state", "discrete_state"], default="continuous_state" if tuple, env is the constructor and keywords of the env on which to test. if str in ["continuous_state", "discrete_state"], we use a default Benchmark environment. init_kwargs : dict Arguments required by the agent's constructor. """ if init_kwargs is None: init_kwargs = {} train_env = _make_env(env) agent1 = AgentManager( agent, train_env, fit_budget=5, n_fit=1, seed=SEED, init_kwargs=init_kwargs ) agent1.fit(3) agent1.fit(3) agent2 = AgentManager( agent, train_env, fit_budget=5, n_fit=1, seed=SEED, init_kwargs=init_kwargs ) agent2.fit(6) result = check_agents_almost_equal( agent1.agent_handlers[0], agent2.agent_handlers[0] ) assert ( result ), "Error: fitting the agent two times for 10 steps is not equivalent to fitting it one time for 20 steps."
env = VecFrameStack(env, n_stack=4) env = ScalarizeEnvWrapper(env) return env # # Testing single agent # if __name__ == "__main__": # # Training several agents and comparing different hyperparams # stats = AgentManager( A2CAgent, train_env=(env_constructor, None), eval_env=(eval_env_constructor, None), eval_kwargs=dict(eval_horizon=200), agent_name="A2C baseline", fit_budget=5000, init_kwargs=dict(policy="CnnPolicy", verbose=10), n_fit=4, parallelization="process", output_dir="dev/stable_baselines_atari", seed=123, ) stats.fit() stats.optimize_hyperparams(timeout=60, n_fit=2)
def execute_message(message: interface.Message, resources: interface.Resources) -> interface.Message: response = interface.Message.create(command=interface.Command.ECHO) # LIST_RESOURCES if message.command == interface.Command.LIST_RESOURCES: info = {} for rr in resources: info[rr] = resources[rr]["description"] response = interface.Message.create(info=info) # AGENT_MANAGER_CREATE_INSTANCE elif message.command == interface.Command.AGENT_MANAGER_CREATE_INSTANCE: params = message.params base_dir = pathlib.Path(metadata_utils.RLBERRY_DEFAULT_DATA_DIR) if "output_dir" in params: params[ "output_dir"] = base_dir / "server_data" / params["output_dir"] else: params["output_dir"] = base_dir / "server_data/" agent_manager = AgentManager(**params) filename = str(agent_manager.save()) response = interface.Message.create(info=dict( filename=filename, agent_name=agent_manager.agent_name, output_dir=str(agent_manager.output_dir).replace( "server_data/", "client_data/"), )) del agent_manager # AGENT_MANAGER_FIT elif message.command == interface.Command.AGENT_MANAGER_FIT: filename = message.params["filename"] budget = message.params["budget"] extra_params = message.params["extra_params"] agent_manager = AgentManager.load(filename) agent_manager.fit(budget, **extra_params) agent_manager.save() response = interface.Message.create(command=interface.Command.ECHO) del agent_manager # AGENT_MANAGER_EVAL elif message.command == interface.Command.AGENT_MANAGER_EVAL: filename = message.params["filename"] agent_manager = AgentManager.load(filename) eval_output = agent_manager.eval_agents( message.params["n_simulations"]) response = interface.Message.create(data=dict(output=eval_output)) del agent_manager # AGENT_MANAGER_CLEAR_OUTPUT_DIR elif message.command == interface.Command.AGENT_MANAGER_CLEAR_OUTPUT_DIR: filename = message.params["filename"] agent_manager = AgentManager.load(filename) agent_manager.clear_output_dir() response = interface.Message.create( message=f"Cleared output dir: {agent_manager.output_dir}") del agent_manager # AGENT_MANAGER_CLEAR_HANDLERS elif message.command == interface.Command.AGENT_MANAGER_CLEAR_HANDLERS: filename = message.params["filename"] agent_manager = AgentManager.load(filename) agent_manager.clear_handlers() agent_manager.save() response = interface.Message.create( message=f"Cleared handlers: {filename}") del agent_manager # AGENT_MANAGER_SET_WRITER elif message.command == interface.Command.AGENT_MANAGER_SET_WRITER: filename = message.params["filename"] agent_manager = AgentManager.load(filename) agent_manager.set_writer(**message.params["kwargs"]) agent_manager.save() del agent_manager # AGENT_MANAGER_OPTIMIZE_HYPERPARAMS elif message.command == interface.Command.AGENT_MANAGER_OPTIMIZE_HYPERPARAMS: filename = message.params["filename"] agent_manager = AgentManager.load(filename) best_params_dict = agent_manager.optimize_hyperparams( **message.params["kwargs"]) agent_manager.save() del agent_manager response = interface.Message.create(data=best_params_dict) # AGENT_MANAGER_GET_WRITER_DATA elif message.command == interface.Command.AGENT_MANAGER_GET_WRITER_DATA: # writer scalar data filename = message.params["filename"] agent_manager = AgentManager.load(filename) writer_data = agent_manager.get_writer_data() writer_data = writer_data or dict() for idx in writer_data: writer_data[idx] = writer_data[idx].to_csv(index=False) # tensoboard data tensorboard_bin_data = None if agent_manager.tensorboard_dir is not None: tensorboard_zip_file = rlberry.utils.io.zipdir( agent_manager.tensorboard_dir, agent_manager.output_dir / "tensorboard_data.zip", ) if tensorboard_zip_file is not None: tensorboard_bin_data = open(tensorboard_zip_file, "rb").read() tensorboard_bin_data = base64.b64encode( tensorboard_bin_data).decode("ascii") response = interface.Message.create( data=dict(writer_data=writer_data, tensorboard_bin_data=tensorboard_bin_data)) del agent_manager # end return response
ppo_params["gamma"] = 0.99 ppo_params["learning_rate"] = 0.001 ppo_params["eps_clip"] = 0.2 ppo_params["k_epochs"] = 4 eval_kwargs = dict(eval_horizon=horizon, n_simulations=20) ppo_stats = AgentManager( PPOAgent, env, fit_budget=n_episodes, eval_kwargs=eval_kwargs, init_kwargs=ppo_params, n_fit=2, ) ppo_stats.fit(n_episodes // 2) plot_writer_data( ppo_stats, tag="episode_rewards", preprocess_func=np.cumsum, title="Cumulative Rewards", show=False, ) evaluate_agents([ppo_stats], show=False) ppo_stats.fit(n_episodes // 4) plot_writer_data( ppo_stats, tag="episode_rewards", preprocess_func=np.cumsum, title="Cumulative Rewards", show=False,
env_kwargs = {"means": means, "stds": 2 * np.ones(len(means))} agent = AgentManager( UCBAgent, (env_ctor, env_kwargs), fit_budget=T, init_kwargs={"B": 2}, n_fit=M, parallelization="process", mp_context="fork", ) # these parameters should give parallel computing even in notebooks # Agent training agent.fit() # Compute and plot (pseudo-)regret def compute_pseudo_regret(actions): return np.cumsum(np.max(means) - means[actions.astype(int)]) fig = plt.figure(1, figsize=(5, 3)) ax = plt.gca() output = plot_writer_data( [agent], tag="action", preprocess_func=compute_pseudo_regret, title="Cumulative Pseudo-Regret", ax=ax,
# write_scalar = "action") env_ctor = GridWorld env_kwargs = dict( nrows=3, ncols=10, reward_at={(1, 1): 0.1, (2, 9): 1.0}, walls=((1, 4), (2, 4), (1, 5)), success_probability=0.7, ) env = env_ctor(**env_kwargs) agent = AgentManager(VIAgent, (env_ctor, env_kwargs), fit_budget=10, n_fit=3) agent.fit(budget=10) # comment the line above if you only want to load data from rlberry_data. # We use the following preprocessing function to plot the cumulative reward. def compute_reward(rewards): return np.cumsum(rewards) # Plot of the cumulative reward. output = plot_writer_data( agent, tag="reward", preprocess_func=compute_reward, title="Cumulative Reward" ) # The output is for 500 global steps because it uses 10 fit_budget * horizon # Log-Log plot :
n_fit=2, sampler_method="optuna_default", optuna_parallelization="thread", ) initial_n_trials = len(manager.optuna_study.trials) # save manager_fname = manager.save() del manager # load manager = AgentManager.load(manager_fname) # continue previous optimization, now with 120s of timeout and multiprocessing manager.optimize_hyperparams( n_trials=512, timeout=120, n_fit=8, continue_previous=True, optuna_parallelization="process", n_optuna_workers=4, ) print("number of initial trials = ", initial_n_trials) print("number of trials after continuing= ", len(manager.optuna_study.trials)) print("----") print("fitting agents after choosing hyperparams...") manager.fit() # fit the 4 agents
fit_budget=N_EPISODES, init_kwargs=params_a2c, eval_kwargs=eval_kwargs, n_fit=4, seed=123, parallelization="process", max_workers=2, ) agent_manager_list = [rsucbvi_stats, rskernel_stats, a2c_stats] for st in agent_manager_list: st.fit() # Fit RSUCBVI for 50 more episodes rsucbvi_stats.fit(budget=50) # learning curves plot_writer_data( agent_manager_list, tag="episode_rewards", preprocess_func=np.cumsum, title="cumulative rewards", show=False, ) plot_writer_data( agent_manager_list, tag="episode_rewards", title="episode rewards", show=False ) # compare final policies
eval_kwargs = dict(eval_horizon=HORIZON, n_simulations=20) # ------------------------------- # Run AgentManager and save results # -------------------------------- ppo_stats = AgentManager( PPOAgent, train_env, fit_budget=N_EPISODES, init_kwargs=params_ppo, eval_kwargs=eval_kwargs, n_fit=4, output_dir="dev/", parallelization="process", ) ppo_stats.fit() # fit the 4 agents ppo_stats_fname = ppo_stats.save() del ppo_stats # ------------------------------- # Load and plot results # -------------------------------- ppo_stats = AgentManager.load(ppo_stats_fname) # learning curves plot_writer_data( ppo_stats, tag="episode_rewards", preprocess_func=np.cumsum, title="Cumulative Rewards", show=False,
agent_name="LSVI (random exploration)", parallelization=parallelization, ) # Oracle (optimal policy) oracle_stats = AgentManager( ValueIterationAgent, env, init_kwargs=params_oracle, fit_budget=n_episodes, eval_kwargs=eval_kwargs, n_fit=1, ) # fit stats.fit() stats_ucbvi.fit() stats_random.fit() oracle_stats.fit() # visualize results plot_writer_data( [stats, stats_ucbvi, stats_random], tag="episode_rewards", preprocess_func=np.cumsum, title="Cumulative Rewards", show=False, ) plot_writer_data([stats, stats_ucbvi, stats_random], tag="dw_time_elapsed", show=False)